You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
In this paper we raise questions about the reality of computational quantum parallelism. Such questions are
important because while quantum theory is rigorously established, the hypothesis that it supports a more powerful
model of computation remains speculative. More specifically, we suggest the possibility that the seeming
computational parallelism offered by quantum superpositions is actually effected by gate-level parallelism in the
reversible implementation of the quantum operator. In other words, when the total number of logic operations
is analyzed, quantum computing may not be more powerful than classical. This fact has significant public policy
implications with regard to the relative levels of effort that are appropriate for the development of quantumparallel
algorithms and associated hardware (i.e., qubit-based) versus quantum-scale classical hardware.
The alert did not successfully save. Please try again later.
Marco Lanzagorta, Jeffrey Uhlmann, "Is quantum parallelism real?," Proc. SPIE 6976, Quantum Information and Computation VI, 69760W (3 April 2008); https://doi.org/10.1117/12.778019