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ABSTRACT 
 

We show how guided electromagnetic waves propagating along an adiabatically tapered negative-refractive-index 
metamaterial heterostructure can be brought to a complete halt. It is analytically shown that, in principle, this method 
simultaneously allows for broad bandwidth operation (since it does not rely on group index resonances), large delay-
bandwidth products (since a wave packet can be completely stopped and buffered indefinitely) and high, almost 100%, 
in/out-coupling efficiencies. By nature, the presented scheme invokes solid-state materials and, as such, is not subject to 
low-temperature or atomic coherence limitations. A wave analysis, which demonstrates the halting of a monochromatic 
field component travelling along the heterostructure, is followed by a pertinent ray analysis, which unmistakably 
illustrates the trapping of the associated light-ray and the formation of a double light-ray cone (‘optical clepsydra’) at the 
point where the ray is trapped. This method for trapping photons conceivably opens the way to a multitude of hybrid 
optoelectronic devices to be used in ‘quantum information’ processing, communication networks and signal processors 
and may herald a new realm of combined metamaterials and slow light research.  
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1. INTRODUCTION 

     A far-reaching development in modern nanophotonics and nanoengineering has been the conception and practical 
implementation of materials exhibiting simultaneously negative electric permittivity and magnetic permeability, known 
also as left-handed metamaterials (LH-MMs). Their conceivable strong economic and social impact, owing to their 
potential applicability in diverse realms of science, such as telecommunications, radars and defence, nanolithography 
with light, microelectronics, medical imaging, and so on, has lately prompted an overwhelming excitement within the 
scientific community [1]-[3]. 

     The history of MMs appears to be dating back to the pioneering work of Kock [4] in the late 40’s; while working at 
Bell Labs with Sergei Schelkunoff, renowned for his “field equivalence principles” and for his work on antennas theory, 
Kock published a series of works wherein he proposed numerous ideas for constructing lightweight and small-volume 
“artificial dielectrics”, used as microwave lenses in antenna systems. Amongst others, he studied the response to an 
incident quasi-static electromagnetic radiation of isolated or regularly-arrayed metallic particles of various shapes, such 
as spheres, discs, ellipsoids and prolate or oblate spheroids. He concluded that such structures effectively behave as a 
dielectric medium, whose permittivity ε and permeability µ can be purposely tuned (but not independently of each other) 
to an arbitrarily large or small, even negative, value by properly arranging the particles in three dimensions, i.e. the 
optical properties of the medium depended solely on the particles’ geometrical set up, rather than on their own intrinsic 
behaviour. Kock also showed that a specially-designed structure, which lately has come to be known as “split-ring 
resonator” (SRR), can be used to independently increase the permeability µ, such that one can reduce or altogether 
eliminate the diamagnetic nature of the aforementioned composite structures. His work rose considerable interest within 
the engineering community of the time, with a number of works extending or elaborating on his ideas. Since then, it has 
been the subject of detailed coverage in standard engineering textbooks [5]. 
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     More than a decade later, Rotman [6] also considered the quasi-static response of an array of thin conducting wires, 
and he showed that such a structure closely resembles, on the macroscopic level, a plasma medium. In particular, he 
proved that the electric permittivity ε of this artificial dielectric medium varies with frequency following a Drude-type 
law. Consequently, below a certain “cutoff” frequency no incident electromagnetic radiation could penetrate it. 
Critically, however, neither Kock nor Rotman or, indeed, any of the early contributors investigated the properties of 
media exhibiting concurrently negative ε and µ. Partly, that was because the main motivation behind similar works at that 
time was to design plasma media at RF or microwave frequencies that would closely simulate the ionosphere, prompted 
by NASA’s desire to secure the safe re-entrance of space-capsules into the earth’s atmosphere.               

     Veselago [7] was evidently the first to systematically consider, in the late 60’s, the possibility and some properties of 
“double-negative materials” (DNGMs). In particular, he showed that a negative electric permittivity ε and magnetic 
permeability µ would imply a reversal of almost all known electromagnetic phenomena, including the angle of refraction 
inside a DNGM, the Doppler effect, the sign of the refractive index n (e.g., n = – 1) and the right-handedness of the E, H 
and k vector-triad, from where the designation of such materials as “left-handed” origins. In spite of his noteworthy 
findings, and apparently unaware of Kock’s and other workers’ research in the same field, Veselago did not go on to 
materialise his theoretical conclusions. Even so, his work did not go unnoticed and he was invited several times to 
highlight his research at major international scientific conferences [8].        

     At present, the realm of “artificial dielectrics” or “metamaterials” (from the Greek word “meta”, which here means 
“beyond”) enjoys a breadth of scientific activity and exploration, having established a sound and coherent mathematical 
formalism, the predictions of which have been verified by numerous experimental and numerical-simulation works. This 
revived interest followed from a series of works by Pendry, wherein he proposed practical means for realizing LH-MMs 
experimentally [9]. Moreover, building on Veselago’s work, Pendry argued that a slab constructed by the same materials 
could, ideally, act as a “perfect lens”, overcoming the well-known diffraction limitations. After these insights, the 
physical construction of a composite LH structure has been demonstrated by Shelby et al. [10], and the possibility of 
achieving subwavelength resolution of an object with the same structure has been demonstrated with further experiments 
[11]. By now there is compelling evidence that, via building on familiar transmission-line concepts borrowed from 
microwave analysis, these materials can be designed to exhibit broadband negative-index behaviour and relative 
robustness to losses, all through the microwave up to the ultraviolet domain [12, 13]. 

     During the same period and in parallel with the above advances a different, also exciting, realm of contemporary 
research has also been witnessing impressive progress. The goal in this field was to produce “slow” or completely 
“stopped” light, i.e. electromagnetic waves in the optical and telecommunication regimes with extremely small group 
velocities compared to the speed of light in vacuum (vg << c) [14]. Such an ability to controllably decelerate, stop, store   
and   regenerate / release   optical   pulses  in  a  low-loss  regime,  will  conceivably  have  important  potential 
applications, ranging from quantum memories for photons and storage of light, to the realisation of optical buffers for 
photonic communication networks. 

     Until now, a variety of methods have been proposed as a means of producing “slow” or “stopped” light, including 
electromagnetically induced transparency (EIT) [15], quantum-dot semiconductor optical amplifiers (QD-SOAs) [16], 
photonic crystals (PCs) [17], coherent population oscillations (CPOs) [18], stimulated Brillouin scattering (SBS) [19] 
and surface plasmon polaritons (SPPs) in metallodielectric waveguides [20, 21]. However, so far, most of these methods 
bear inherent limitations that may hinder their practical deployment. For instance, EIT uses ultracold atomic gases (e.g. a 
cloud of sodium atoms at a temperature of 0.9 µK) and not solid state materials, QD-SOAs usually allow for only modest 
delays but for potentially ultra-broadband light pulses, CPOs and SBS are very narrowband (typically, several MHz) 
owing to the narrow transparency window of the former and the narrow Brillouin gain bandwidth of the latter, SPPs are 
very sensitive to surface roughness and are relatively difficult to excite, while PCs may be highly multimodal; this, 
combined with the strong impedance mismatch in the “slow-light regime” makes launching the incoming light energy to 
a single, slow mode alone overly difficult.  

     In what follows we show that efficient slow and stopped light can be realized inside axially varying, adiabatically 
tapered, NRI waveguide heterostructures. This method for producing “slow-light” turns out to be remarkably simple and 
bears a number of serious advantages compared to previously proposed ways of decelerating optical signals. The 
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heterostructures investigated here can be designed for monomode operation in the desired frequency range, while the 
control of the group velocity can be achieved by appropriate tuning of the microphotonic structure, either through laser 
thermo-optic illumination to locally modify the refractive index, or via optically-induced attractive/repulsive forces 
exerted on the heterostructures to manipulate the thickness of its core. We prove that the same is also true for the light in- 
and outcoupling, which can be satisfactorily adjusted by adiabatically tapering the thickness of waveguide core. Finally, 
it is shown that the present mechanism for decelerating and trapping light does not rely on group index resonances, and 
therefore broadband slow light can be obtained provided that the negative material parameters are designed to exist over 
relatively large bandwidths, with low losses, at optical frequencies, as highlighted above [12, 13].  

2. SLOW LIGHT IN ADIABATICALLY TAPERED NEGATIVE-INDEX 
HETEROSTRUCTURES 

In this section we investigate the propagation of light along a waveguide with a slowly, axially varying negative 
refractive index (NRI) core. In particular, we analytically prove that at a pre-arranged core thickness, the guided 
lightwave is altogether halted. We derive an expression for the effective guide thickness, and connect it to time-averaged 
power flow propagating in the increasing (forward) +z direction. Finally, our analysis reveals that NRI heterostructures 
can facilitate very efficient butt-coupling from a conventional, right handed, dielectric waveguide. 

2.1  Adiabatically tapered NRI waveguide  
 

     For the applicability of the adiabatic approximation one needs to ensure that the variation of core half-thickness α 
with propagation distance z (see Fig. 1) is properly slow. Starting from Maxwell’s equations and by deploying coupled-
mode theory, we can formally show [22, Chs. 19 & 28] that the requirement for slow core thickness variation is fulfilled 
when the length of each tapered waveguide segment is large compared with the largest distance over which the guided 
fields can change appreciably owing to phase differences between the supported local modes. This leads to the following 
‘axial variation criterion’: 
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where β2 and β3 are the scalar propagation constants of the second- (m = 1) and third-order (m = 2) backward waveguide 
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     The electromagnetic fields G = E or H at a distance z = zt inside an axially varying left-handed heterostructure 
(LHH), which satisfies the above criterion, are given by: 
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Here the parameter F, which is the positive constant used in the solution ansatz to the wave equation (see Eq. (14)), is 
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LHH [23, 24, 28] and z
iP+  the time-averaged power flow in the i-layer (i = 1, 2, 3), propagating in the increasing +z 

direction. In order to enforce the conservation of con
totP  in the analytic computations, we normalize the fields in such a  
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where ,13 rrε ε/εσ =  ,13 rrε ρ/ρρ =  W2 and W3 are the reduced decay constants of the second and third layer, 
respectively, and U is the reduced transverse constant. 
 
 

 
 

Fig. 1. Schematic illustration of an oscillatory wave guided along an ordinary dielectric waveguide and coupled to 
an adiabatically tapered left-handed heterostructure. Each frequency component (‘color’) of the wave stops 
at correspondingly different point inside the tapered negative-index waveguide, forming a ‘trapped rainbow’.  

 
 
     From Eq. (4), it follows that by requiring at each segment of the tapered waveguide: 
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with Θ being equal to the summation inside the parenthesis of Eq. (3), we ensure that the guided electromagnetic field 
carries a constant (conserved) total power flow, equal to ,con

totP  throughout the LHH. Note that the fields are normalised 

with respect to ,con
totP  not ,)Re(1/2 *

tot ∫ ×= ∞
∞−

+ dxP z
z HE  since the latter one does not remain constant along the LHH, as  

in regular dielectric guides but, instead, it continuously decreases until it becomes zero at the ‘critical’ guide thickness. 
Normalising the fields with zP+

tot  instead of ,con
totP would have caused their unphysical divergence at the point where they 

are stopped. 
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Fig. 2. Monochromatic wave propagation along an adiabatically tapered waveguide with a negative refractive 
index core. Shown is the Hy-field component of the propagating, second-order, p-polarised waveguide mode. 
The two solid red lines indicate the thickness of the core layer, while the dashed yellow line at the left 
vertical plane of the figure designates the progressive increase in the amplitude of the propagating magnetic 
component.  

 
     Figure 2 illustrates an exemplary result of such calculations. Shown is a snapshot from the propagation and complete 
halting  of  a  monochromatic  wave  of  frequency  f = 1 THz,  carrying  a  total,  conserved,  time-averaged  power-flow 

=con
totP 82.6 µW/m2/sec. The core layer has refractive index n1 = −5, while the refractive indices of the two dielectric 

cladding layers are n2 = 1.6 and n3 = 1.5. The wave propagates smoothly down the waveguide, and at the ‘critical’ 
thickness of ak0 = 0.55 it altogether stops (vg = 0). Moreover, one clearly observes that while approaching the ‘critical’ 
thickness, the amplitude of the sole magnetic field component progressively increases and the wave becomes spatially 
compressed, as anticipated from the “slow-light” theory [14]. We also note that, while propagating, the wave is in the 
“negative phase velocity” mode, i.e. the directions of the time-averaged power flow zP+

tot  and the longitudinal 
propagation constant β are antiparallel. It is interesting to note that, owing to the anomalous frequency dispersion 
associated with the metamaterial heterostructure, larger wave frequencies (i.e. smaller free-space wavelengths) are 
stopped at larger core thicknesses, as illustrated in Fig. 1. 

 
2.2    Ray analysis of wave propagation in NRI waveguide 
  
     In the previous section we showed that the guided electromagnetic wave completely stops, without being back-
reflected, upon reaching the ‘critical’ guide thickness, since at that point its total time-averaged power (flow) becomes 
zero and so does its group velocity. In fact, it swiftly turns out from a pertinent time-domain analysis that the wave takes 
infinitely long time before it arrives at exactly the ‘critical’ point, i.e. the associated time diverges logarithmically with 
the distance from that point. It is also important to note that the vanishing group velocity of the wave does not 
necessarily prove that the wave will stop. For instance, Fig. 3 illustrates a familiar situation from classical mechanics, 
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wherein a tennis ball hitting a vertical wall assumes zero velocity before being reflected back; this is, obviously, because 
the total energy (kinetic + dynamic) of the ball is not zero at the point where u = 0 and, as a result, the stored dynamic 
energy is converted back to kinetic energy and the ball starts moving backwards. In our case, the wave stops because at 
the ‘hitting’ point its total, time-averaged, power vanishes and the time the wave needs to reach that point diverges.   
 
     A much clearer and more intuitive picture of how exactly the wave is stopped can be obtained by tracing the 
trajectory of the associated light ray (of the monochromatic wave) along its zigzag path. To this end, let us assume that a 
ray of p-polarised light impinges upon the 1-3 media interface with angle θ. Following a course of analysis similar to that 
followed for dielectric waveguides, one may show that the associated Goos-Hänchen phase shift will be [22, 25]: 
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For the sake of convenience in the subsequent algebraic manipulations, let us rewrite Eq. (6) in the following form: 
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with ,13 rrµ µ/µσ = from whence we obtain: 
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The inverted ‘penetration’ distance, xp13, can now be calculated by means of the following relationship: 
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and we successively have: 
 

                                                                     

 
 
 

Fig. 3. Schematic illustration of a tennis ball hitting a vertical wall and being reflected backwards.  
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which is the relation for the distance between the rays’ cross points and the 1-3 media interface. In a similar vein, one 
can prove that: 
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     Let us, now, derive an expression associating the time-averaged power flow propagating in the increasing +z direction 
with the effective thickness of the left-handed heterostructure, similar to the relations that hold for conventional 
dielectric heterostructures [22, 26]. We recall that the solution ansatz to the wave equation for the p-polarised oscillatory 
waveguide modes supported by the LHH has the following form: 
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 After some algebraic manipulations, we can analytically calculate the 

total time-averaged power flow in the increasing +z direction, ,tot
zP+  as [23, 24, 28]: 
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from whence we immediately obtain: 
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where teff = 2α – xp12 – xp13 is effective thickness of the left-handed heterostructure. Note that, owing to the negativeness 
of  the permittivity ε1 in  the core of  the LHH, the term maxmax

yx HE  in  the right-hand side of Eq. (16) is always negative;  
 

 

 

Fig. 4. Association of wave propagation inside the adiabatically tapered NRI waveguide with the corresponding 
zigzag ray analysis for different guide widths. The optogeometric parameters are those of Fig. 2. 
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phase velocity mode ( z
tP +
ot  antiparallel to the mode longitudinal propagation constant β) and a positive z

tP +
ot  to a positive 

phase velocity mode ( z
tP+
ot  and β are parallel). Eq. (16) reveals that at the “critical” physical core thickness all three 

quantities, i.e. group velocity, time-averaged power-flow and guide effective thickness, simultaneously vanish.  
 
     By means of Eqs. (15) and (16) we may, hence, deduce that, in stark contrast to conventional dielectric waveguides, 
in NRI heterostructures the effective thickness teff is always smaller that the core physical thickness 2α, and can become 
zero or even negative. An example of zero effective NRI waveguide thickness is illustrated in the top left inset of Fig. 5. 
For the set of optogeometric parameters corresponding to that inset, the two Goos-Hänchen phase shifts experienced by 
the ray upon hitting the two media interfaces are such that xp12 + xp13 = 2α exactly (see Fig. 4, bottom left inset). As a 
result, the light ray becomes permanently trapped, forming a double light-ray cone, which (in view of its characteristic 
hourglass form) we call ‘optical clepsydra’.  
 
2.3  In-coupling from a conventional dielectric waveguide to a NRI heterostructure 
 
     Here we show that efficient in-coupling from a conventional dielectric waveguide to the previously described NRI 
heterostructure can, indeed, be achieved. To demonstrate that, we start by calculating the characteristic impedances of 
both structures. To this endeavour, we use the “power-voltage” definition of the characteristic impedance in waveguide 
structures [27, 28], beginning by calculating a ‘voltage’ V0 across each waveguide by means of the following relation:  
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We may then obtain the following expressions for the voltages Vi (i = 1, 2, 3) crosswise each i-layer of the NRI 
heterostructure: 
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from whence we find: 
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where the “+” (plus) sign is used for ]1/4)(,1/4)[( πmπmU +−∈  and the “–” (minus) sign for 

],3/4)(,1/4)[( πmπmU ++∈  with 0. U, >∈Nm   
 
     In a similar vein, using Eq. (14) and the parameter definitions that follow it, we obtain the following expressions for 
the Vi (i = 1, 2, 3) voltages of the dielectric waveguide: 
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from whence we find: 
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where the use of the “+” (plus) and “–” (minus) signs follows the same rule as in the case of the LHH. Moreover, one can 
show that the time-averaged power flow propagating in the increasing +z direction inside the RHH is given by [26]: 
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     By means of the power-voltage definition of the waveguide characteristic impedance [27]: 
 

                                                                                    ,
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2
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0 z
PV
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|V|
Z +=                                                                               (27) 

 
using Eqs. (15) and (21) for the NRI heterostructure, or Eqs. (25) and (26) for the dielectric waveguide, one can now 
directly calculate the impedance for each waveguide. We note from Eq. (27) that the characteristic impedance of the left-
handed heterostructure diverges at the ‘critical’ guide thickness, as anticipated, since in this case the heterostructure is in 
the ‘stopped light regime’ and, hence, the corresponding light signal can not penetrate it and propagate inside.     
 
     Using the above relations, one finds that for the NRI heterostructure analysed before (Fig. 4) and for a conventional 
optical waveguide with ncore = 1.25, ncladding2 = 1.2 and ncladding3 = 1.1, we can achieve complete impedance matching for a 
reduced guide thickness, ak0, equal to approximately 12.77. In addition to the impedance and thickness matching at that 
point, it also promptly turns out that the two structures have very similar magnetic field distributions (mode matching). 
As a result, a wave launched from the dielectric waveguide to the left-handed heterostructure will experience minimal 
reflection, mainly owing to minute mode-mismatch, which in practice can be further adjusted and optimised at will.  
 
 

3. CONCLUSIONS 
 
     In summary, we have shown how guided electromagnetic energy can efficiently be brought to a complete standstill 
whilst travelling inside axially varying NRI waveguiding heterostructures. By nature, the scheme invokes solid-state 
materials and, as such, is not subject to low-temperature or atomic coherence limitations. Moreover, it inherently allows 
for high in-coupling efficiencies and broadband function, since the deceleration of light does not rely on refractive index 
resonances. This method for trapping photons opens the way to a multitude of hybrid, optoelectronic devices to be used 
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in ‘quantum information’ processing, communication networks and signal processors, and conceivably heralds a new 
realm of combined metamaterials and slow light research.  
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