You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 April 2008Beam shaping with nanooptical devices
We present a review of recent achievements in nanoscale optical devices based on energy transport with surface
plasmon-polaritons and localized surface plasmons. Chains of metal subwavelength-size particles and stripes are used to
build straight waveguides, s-bends, y-junctions and beam shaping devices. Strong enhancement of near-field in
nanogaps between particles leads to efficient light emission from such nanoantennas. Development of surface plasmon
nanoptics stimulates further progress in near-field imaging. To improve resolution of scanning near-field optical
microscope (SNOM) it is necessary to improve light throughput in tapered metal-coated SNOM probes. This is
achievable due to resonant surface plasmons that propagate in corrugated probes.
The alert did not successfully save. Please try again later.
Jacek Pniewski, Tomasz J. Antosiewicz, Wladyslaw M. Saj, Tomasz Szoplik, "Beam shaping with nanooptical devices," Proc. SPIE 7008, Eighth International Conference on Correlation Optics, 70081K (22 April 2008); https://doi.org/10.1117/12.797099