Translator Disclaimer
12 July 2008 Pupil mapping Exoplanet Coronagraphic Observer (PECO)
Author Affiliations +
The Pupil mapping Exoplanet Coronagraphic Observer (PECO) mission concept is a 1.4-m telescope aimed at imaging and characterizing extra-solar planetary systems at optical wavelengths. The coronagraphic method employed, Phase-Induced Amplitude Apodization or PIAA (a.k.a. pupil mapping) can deliver 1e-10 contrast at 2 lambda/D and uses almost all the starlight that passes through the aperture to maintain higher throughput and higher angular resolution than any other coronagraph or nuller, making PECO the theoretically most efficient existing approach for imaging extra-solar planetary systems. PECO's instrument also incorporates deformable mirrors for high accuracy wavefront control. Our studies show that a probe-scale PECO mission with 1.4 m aperture is extremely powerful, with the capability of imaging at spectral resolution R≈∠15 the habitable zones of already known F, G, K stars with sensitivity sufficient to detect planets down to Earth size, and to map dust clouds down to a fraction of our zodiacal cloud dust brightness. PECO will acquire narrow field images simultaneously in 10 to 20 spectral bands covering wavelengths from 0.4 to 1.0 μm and will utilize all available photons for maximum wavefront sensing and imaging/spectroscopy sensitivity. This approach is well suited for low-resolution spectral characterization of both planets and dust clouds with a moderately sized telescope. We also report on recent results obtained with the laboratory prototype of a coronagraphic low order wavefront sensor (CLOWFS) for PIAA coronagraph. The CLOWFS is a key part of PECO's design and will enable high contrast at the very small PECO inner working angle.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Back to Top