You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Planned Extremely Large Telescopes will rely on availability of large Deformable Mirror in the 2-3m class. Design
and construction of such mirrors are challenging and call for powerful simulation tools. We present an evaluation
model which is used to study performance of a large deformable mirror for three actuator topologies.
Back sensors topologies are discussed from the point of view of sensor noise propagation. Two methods for
estimating the deflection at the actuator locations on the basis of sensor signal are presented and compared
regarding the computational power needed.
The alert did not successfully save. Please try again later.
Rikard Heimsten, Torben Andersen, Mette Owner-Petersen, "Modeling large deformable mirrors," Proc. SPIE 7017, Modeling, Systems Engineering, and Project Management for Astronomy III, 70171P (9 July 2008); https://doi.org/10.1117/12.788932