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Introduction 
 
     The Spin Hall Effect and related transport phenomena originating from the coupling of the charge 
and spin currents due to spin-orbit interaction were predicted in 1971 by Dyakonov and Perel [1, 2]. 
Following the suggestion in [3], the first experiments in this domain were done by Fleisher's group at 
Ioffe Institute in Saint Petersburg [4, 5], providing the first observation of what is now called the 
Inverse Spin Hall Effect. As to the Spin Hall Effect itself, it had to wait for 33 years before it was 
experimentally discovered by two groups in Santa Barbara (US) [6] and in Cambridge (UK) [7]. 
These observations aroused considerable interest and triggered intense research, both experimental 
and theoretical, with hundreds of publications. 
     The Spin Hall Effect consists in spin accumulation at the boundaries of a current-carrying 
conductor, the directions of the spins being opposite at the opposing boundaries. For a cylindrical 
wire the spins wind around the surface. The boundary spin polarization is proportional to the current 
and changes sign when the direction of the current is reversed.  
     The term "Spin Hall Effect" was introduced by Hirsch [8] in 1999. It is indeed somewhat similar 
to the normal Hall effect, where charges of opposite signs accumulate at the sample boundaries due 
to the action of the Lorentz force in magnetic field.  However, there are significant differences. First, 
no magnetic field is needed for spin accumulation. On the contrary, if a magnetic field perpendicular 
to the spin direction is applied, it will destroy the spin polarization. Second, the value of the spin 
polarization at the boundaries is limited by spin relaxation, and the polarization exists in relatively 
wide spin layers determined by the spin diffusion length, typically on the order of 1 µm (as opposed 
to the much smaller Debye screening length where charges accumulate in the normal Hall effect). 
 
 
Phenomenology 
 
      Spin currents. The electrons are characterized not only by charge density and electric current, 
but also by spin density and spin current. The spin current is described by a tensor qij, where the first 
index indicates the direction of flow, while the second one says which component of the spin is 
flowing. Thus, if all electrons with concentration n are completely spin-polarized along z and move 
with a velocity v in the x direction, the only non-zero component of qij is qxz = nv. 1 

                                                 
1   Since s =1/2, it might be more natural to define the spin current density for this case as (1/2)nv. It is more 
convenient to omit 1/2, because this allows avoiding numerous factors 1/2 and 2 in other places. It would be more 
correct to describe our definition of qij as the spin polarization current density tensor. Below we will use the 
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     Both the charge current and the spin current change sign under space inversion (because spin is a 
pseudo-vector). In contrast, they behave differently with respect to time inversion: while the electric 
current changes sign, the spin current does not (because spin changes sign under time inversion). 
     We will now discuss, from pure symmetry considerations, what phenomena of spin-charge 
coupling are in principle possible. For the moment, we restrict ourselves to an isotropic media with 
inversion symmetry. This does not mean that the results obtained below are not valid when inversion 
symmetry is absent. Rather, it means that we will not take into account additional specific effects, 
which are due entirely to the lack of inversion symmetry. The phenomenological approach allows to 
describe a number of interesting physical effects by introducing a single dimensionless parameter. 
 
     Coupling of spin and charge currents. Consider spin-up and spin-down (with respect to the z 
axis) electrons and suppose that we force our electrons to flow in the direction x. Let q± be the 
corresponding flow densities, which are not necessarily equal.  The crucial point is that because of 
spin-orbit interaction these currents will induce currents of opposite signs for the two spin species in 
the y-direction: 
                                                        

±± = xy qq γm ,                                                           (1) 
 
where γ is a dimensionless parameter proportional to the strength of the spin-orbit interaction. We 
assume that γ is small; the sign of γ is a priori unknown. Note, that under time inversion we have:  
q±

 

  →  – q
 

m   Consequently, γ  changes sign under time inversion.  
     We now introduce the total (charge) flow density q = q+ + q– and the spin current qiz  = qi

+ – qi
–. 

Mutual transformations of spin and charge currents follow from Eq. 1: 
 
           xzy qq γ−= ,     xyz qq γ−=         (2) 
 
     More accurately, the transport phenomena related to coupling of the spin and charge currents can 
be described phenomenologically in the following simple way [9].  We introduce the charge and spin 
currents, q(0)  and qij 

(0) ,  which would exist in the absence of spin-orbit interaction: 
 
           q(0)  =  – µnE – D∂n/∂r ,           (3) 
 
                     qij 

(0)  =  – µEiPj – D∂Pj/∂xi ,        (4) 
 
where µ and D are the mobility and the diffusion coefficient, connected by the Einstein relation, n is 
the electron concentration, E is the electric field, and P is the vector of spin polarization density (it is 
convenient to use this quantity, instead of the normal spin density S =P/2, see footnote 1). 
     Equation 3 is the standard drift-diffusion expression for the electron flow, while Eq. 4 describes 
the spin current of polarized electrons, which may exist even in the absence of spin-orbit interaction, 
simply because spins are carried by the electron flow. We ignore possible dependence of mobility on 
spin polarization, which is assumed to be small. If there are other sources for currents, like for 
example a temperature gradient, the corresponding terms should be included in Eqs. 3 and 4.  
     Spin-orbit interaction couples the two currents and gives corrections to the values q(0)  and qij 

(0) ,  

                                                                                                                                                                   
shorthand "spin current" 
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For an isotropic material with inversion symmetry, we have: 2 
 
        qi = qi

(0)
 
+ γεijkqjk

(0)
 
,         (5) 

 
      qij = qij

(0)
 
– γεijkqk

(0),                    (6) 
 
where qi and  qij are the corrected currents, εijk is the unit antisymmetric tensor and γ is the small 
dimensionless parameter introduced above.  Sums over repeating indices are assumed. The 
difference in signs in Eqs. 5 and 6 is due to the different properties of charge and spin currents with 
respect to time inversion. One can check that Eqs. 2 follow from these equations. 
 
 
Phenomenological equations 
 
     Explicit phenomenological expressions for the two currents follow from Eqs. 3-6 (the electric 
current density j is related to q by j = – eq, where e is the elementary charge): 
 
   j/e = µnE + D∂n/∂r + βE×P + δcurl P,   (7) 
 
            qij = –µEiPj

 
 – D∂Pj/∂xi

 
+ εijk (βnEk + δ∂n/∂xk).  (8) 

 
Here  
    β = γ µ,   δ = γ D,      (9) 
 
so that the coefficients β and δ, similar to µ and D, satisfy the Einstein relation. However, since γ 
changes sign under time inversion, β and δ are non-dissipative kinetic coefficients, unlike µ and D. 
     Equations 7 and 8 should be complemented by the continuity equation for the vector of spin 
polarization: 
   ∂Pj/∂t

 
 + ∂qij/∂xi  

+ Pj/τs = 0,              (10) 
 
where τs 

 
is the spin relaxation time.  

     While Eqs. 7-10 are written for a three-dimensional sample, they are equally applicable to the 2D 
case, with obvious modifications: the electric field, space gradients, and all currents (but not the spin 
polarization vector) should have components in the 2D plane only.  
 
 
Physical consequences of spin-charge coupling 
 
      Equations 7-10, which appeared for the first time in [1, 2] describe the physical consequences of 
spin-charge current coupling.  The effects of spin-orbit interaction are contained in the additional 
terms with the coefficients β and δ. 
 
     Anomalous Hall Effect.  The term βE×P in Eq. 7 describes the Anomalous Hall Effect, which is 

                                                 
2 Symmetry considerations allow for additional terms in Eq. 6, to be discussed below 
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observed in ferromagnets and is known for a very long time. The measured Hall voltage contains a 
part, which is proportional to magnetization, but cannot be explained as being due to the magnetic 
field produced by magnetization (it is much greater than that, especially at elevated temperatures). It 
took 70 years to understand [10, 11], that the Anomalous Hall Effect is due to spin-orbit interaction.  
    This effect can also be seen in nonmagnetic conductors, where the spin polarization is created by 
application of a magnetic field. The spin-related anomalous effect can be separated from the much 
larger ordinary Hall effect by magnetic resonance of the conduction electrons, which results in a 
resonant change of the Hall voltage [12]. Non-equilibrium spin polarization produced either by 
optical means or by spin injection, should also result in an anomalous Hall voltage. Such an 
experiment was recently done by Miah [13] with GaAs illuminated by circularly polarized light. 
 
      Electric current induced by curl P. The term δ curl P in Eq. 7 describes an electrical current 
induced by an inhomogeneous spin density (now referred to as the Inverse Spin Hall Effect). It can 
also be regarded as the diffusive counterpart of the Anomalous Hall Effect. 
     A way to measure this current under the conditions of optical spin orientation was proposed in 
[3]. The circularly polarized exciting light is absorbed in a thin layer near the surface of the sample. 
As a consequence, the photo-created electron spin density is inhomogeneous, however curl P = 0, 
since P is perpendicular to the surface and it varies in the same direction. By applying a magnetic 
field parallel to the surface, one can create a parallel component of P, thus inducing a non-zero curl 
P and the corresponding surface electric current (or voltage).  
     This effect was found by Bakun et al [4],  providing the first experimental observation of the 
Inverse Spin Hall Effect, see Fig. 1. In a later publication Tkachuk et al [5] observed very clear 
manifestations of the nuclear magnetic resonance in the surface current induced by curl P. 

 
 
 Fig. 1. First experimental observation of the Inverse Spin Hall Effect [4]. a - the experimental setup, b -
voltage measured between the contacts K as a function of magnetic field, c - measured degree of circular 
polarization of luminescence, equal to the normal component of the average electron spin, as a function of 
magnetic field. The solid line in b is calculated using the results in c
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     Current-induced spin accumulation, or Spin Hall Effect. The term βnεijkEk (and its diffusive 
counterpart δεijk∂n/∂xk) describes the Spin Hall Effect: an electrical current induces a transverse spin 
current, resulting in spin accumulation near the sample boundaries [1, 2]. This phenomenon was 
observed experimentally only in recent years [6, 7] and has attracted widespread interest.  
     Spin accumulation can be seen by solving Eq. 10 in the steady state (∂P/∂t = 0) and using Eq.  8 
for the spin current. Since the spin polarization will be proportional to the electric field, terms EP 
can be neglected. The electron concentration should be considered uniform.  
     We take the electric field along the x axis and look at what happens near the boundary y = 0 of a 
wide sample situated at y > 0 (when the sample size is greater than the spin diffusion length, spin 
accumulation near the other boundary can be considered independently). The boundary condition 
obviously should correspond to vanishing of the normal to the boundary component of the spin 
current,  qyj 

 
= 0.  

     The solution of the diffusion equation Dd2P/dy2= P/τs
  

with the boundary conditions at y = 0, 
following from Eq. 8,  dPx/dy = 0, dPy/dy = 0, dPz/dy =  βnE/D, gives the result [1]: 
 

Pz(y) = Pz(0) exp (– y/Ls),      Pz(0) = –  βnE Ls
 
/D,      Px = Py

 
= 0,  (11) 

 
where Ls 

 
= (D τs)1/2 is the spin diffusion length.  

     Thus the current-induced spin accumulation exists in thin layers (the spin layers) near the sample 
boundaries. The width of the spin layer is given by the spin-diffusion length, Ls, which is typically 
on the order of 1 µm. The polarization within the spin layer is proportional to the driving current, 
and the signs of spin polarization at the opposing boundaries are opposite.  Fig. 2 demonstrates the 
first observation [6] of the Spin Hall Effect in thin films of GaAs by Kerr rotation, which has 
confirmed these predictions. 
 

  
 
 Fig. 2. First observation of the Spin Hall Effect [6]. Left panel - measurements of the Kerr rotation as a 
function of magnetic field at the opposing sample edges. Right panel: spatial dependence of the Kerr rotation 
across the channel. 
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     It should be stressed that all these phenomena are closely related and have their common origin in 
the coupling between spin and charge currents given by Eqs. 5 and 6.  Any mechanism that produces 
the Anomalous Hall Effect will also lead to the Spin Hall Effect and vice versa.  
     It is remarkable that there is a single dimensionless parameter, γ, that governs the resulting 
physics. The calculation of this parameter should be the objective of a microscopic theory.  
 
 
The degree of polarization in the spin layer 
 
     Using Eqs. 11,  9, the degree of spin polarization in the spin layer, P = Pz(0)/n, can be rewritten as  
 
    P = γ(vd/vF)(3τs

 
/τp

 
)1/2,             (12) 

 
where we have introduced the electron drift velocity vd 

 
= µE and used the conventional expression 

for the diffusion coefficient of degenerate 3D electrons D = vF
2τp

 
/3, vF is the Fermi velocity, and τp

 is the momentum relaxation time.  (For 2D electrons, the factor 1/3 should be replaced by 1/2. If the 
electrons are not degenerate, vF should be replaced by the thermal velocity.)  
     In materials with inversion symmetry, like Si, where both the spin-charge coupling and spin 
relaxation via the Elliott-Yaffet mechanism are due to spin asymmetry in scattering by impurities, 
the strength of the spin-orbit interaction cancels out in Eq. 12, since τs 

 
~ γ–2.   

     Thus the most optimistic estimate for the degree of polarization whithin the spin layer is P ~ vd/vF
 
 

[1]. In semiconductors, this ratio may be, in principle, on the order of 1. In the absence of inversion 
symmetry, usually the Dyakonov-Perel mechanism makes the spin relaxation time considerably 
shorter, which is unfavourable for an appreciable spin accumulation. 
 
 
The validity of the approach based on the diffusion equation 
 
     The diffusion equation is valid, when the scale of spatial variation of concentration (in our case, 
of spin polarization density) is large compared to the mean free path l = vFτp. The variation of P 
occures on the spin diffusion length, so the condition Ls >> l should be satisfied. Since Ls ~ l(τs/τp)1/2, 
this condition can be equivalently re-written as τs 

 
>> τp. 

     Thus, if the spin relaxation time becomes comparable to the momentum relaxation time (which is 
the case of the so-called "clean limit", when the spin band splitting is greater than ħ/τp), the diffusion 
equation approach breaks down.  The diffusion equation still can be derived for spatial scales much 
greater than l, but it will be of no help for the problem at hand, because neither this equation, nor the 
boundary conditions for the spin current can any longer be used to study spin accumulation.  Surface 
spin effects will occur on distances less than l from the boundaries and will crucially depend on the 
properties of the interfaces (e.g. flat or rough interface, etc).  To understand what happens near the 
boundaries, one must address the quantum-mechanical problem of electrons reflecting from the 
boundary in the presence of electric field and spin-orbit interaction.  
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     In fact, symmetry considerations allow additional terms in one of our basic equations, Eq. 6. 
Namely, it is possible to complement the rhs of Eq. 6 for the spin current by additional terms of the 
type:  qji

(0)
 
(note the transposition of the indices i and j!) and δijqkk

(0)
 
(the sum over repeating indices 

is assumed) with some new coefficients proportional to the spin-orbit interaction [1, 2]. This means 
that spin-orbit interaction will transform the spin currents, for example, turn qxy

(0)
 
into qyx, i. e. the 

flow of the y component of spin in the x direction will induce the flow of the x component in the y 
direction.                                 
     This swapping of spin currents should lead to new transport effects. For example, consider a 
ferromagnet, where spins are aligned in the z direction. An electrical current in the x direction will be 
accompanied by the spin current qxz

(0), which will induce the spin current qzx. Now spins oriented 
along x will flow to the boundaries located in the z direction. This will lead to accumulation of x-
oriented spins at these boundaries resulting in a slight rotation of the boundary magnetization around 
the y axis. 
     The physical origin of spin currents swapping will be discussed below. 
 
 
Dissipationless spin transport? 
 
     In the current literature, and especially in articles designed for the general public, one can find 
numerous statements concerning the dissipationless spin currents (mostly associated with the so-
called "intrinsic", or "Berry phase" mechanism of the Spin Hall Effect), which are proclaimed to 
provide the shining perspectives of reducing the power consumption in future spin-based computers, 
etc.  
     These statements should be taken with a big grain of salt. First, all spin currents by themselves, 
independently of their microscopic mechanism, are dissipationless.  This is simply a consequence of 
the fact, mentioned in the introduction, that the spin current, unlike the charge current, does not 
change sign under time inversion. Related to this, is the property of the "spin Hall mobility", β, 
which is a dissipationless kinetic coefficient.  Second, the existence of dissipationless spin currents 
does not mean that one can save energy, because the spin current is induced by the charge current, 
which does involve dissipation.  The normal Hall current is dissipationless too. This does not mean 
that we should reduce energy consumption by building computers utilising Hall currents!  
 
 
Phenomenology (without inversion symmetry) 
 
If inversion symmetry is absent, whether in a bulk crystal, or in a two-dimensional structure, effects 
additional to those considered above can arise.  In gyrotropic crystals a current can be induced by a 
homogeneous non-equilibrium spin density, as it was shown theoretically by Ivchenko and Pikus 
[14] and by Belinicher [15]. The first experimental demonstration of this effect was reported in [16]. 
Inversely, an electric current will generate a uniform spin polarization.  
     Phenomenologically, this sort of effects can be described by a second rank tensor Qij, which 
connects the pseudo-vector of spin polarization P with the polar vector of electric current j: 
 

ji
 
= QikPk ,     Pi = Rik jk 

 
,                                                       (13) 

Swapping of spin currents: additional terms in Eq. 6
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where the tensor Rik is the inverse of Qik. Note, that the left- and right-hand sides of Eq. 13 behave 
similarly with respect to time inversion, which means that these equations describe non-dissipative 
phenomena. We refer the reader to [17] for a detailed description of these effects.    
     For a 2D electron gas with the Bychkov-Rashba splitting the tensor Qik can be constructed using 
the Bychkov-Rashba field ER, a vector pointing in the growth direction z: Qij = εijkEk

R , so that Eq. 
13 reduces simply to j ~ ER×P.  Concerning the spin current, in the latter case it may contain two 
additional terms. The first one is quadratic in ER and proportional to the in-plane electric field E:  
 
     qij

  
~  (ER ×E)iEj

R.  
 
If we don't care about the dependence on ER, this term has the same symmetry properties as the 
previously considered εijkEk term, with i,k = x,y.  The second term was first derived by Kalevich, 
Korenev, and Merkulov [18]. It is linear in the ER and proportional to the spin polarization: 
 
     qij 

 
~ PiEj

R – δij
 
(PER),      i = x,y,   j = x,y,z. 

 
For this term, the non-zero components are  qxz

  
~ Px 

 
,  qxz

  
~ Py

 
,  qxx

 
=  qyy ~ Pz 

 
. 

     Thus, the most important new phenomena that may exist in the absence of inversion symmetry 
are the generation of both charge and spin currents by a uniform non-equilibrium spin polarization 
and the inverse effect of producing a bulk spin polarization by charge or spin current. 
 
 
Microscopic mechanisms 
 
     The microscopic mechanisms responsible for the spin-charge coupling and their relative role are 
still not sufficiently well understood, in spite half-century theoretical efforts, and especially in recent 
years. The originally proposed mechanism for the Spin Hall Effect [1, 2] is related to the spin 
asymmetry in electron scattering due to spin-orbit interaction (the Mott effect [19, 20]), which was 
previously used to explain the Anomalous Hall Effect [10]. It is likely that this mechanism accounts 
for the existing experimental observations. Also related to scattering is the side jump mechanism 
proposed by Berger [21] in the contest of the Anomalous Hall Effect in ferromagnets and studied in 
detail by Nozières and Lewiner [22]. It is described as a spin-dependent lateral displacement of the 
electron wave packet during each scattering event. The role of the side jump effect is still not well 
understood. 
     Another, "intrinsic", mechanism was first considered by Karplus and Luttinger [11] and proposed 
recently for specific cases [23, 24], causing much excitement. It is related exclusively to the spin 
band splitting and does not involve spin asymmetry in scattering. 3  
     Here we will qualitatively discuss spin-dependent effects in scattering from the point of view of 
classical mechanics, which allows achieving clarity and transparency lacking so far in the quantum-

                                                 
3   The « universal spin Hall conductivity » predicted in [24] for 2D electrons with Bychkov-Rashba spin splitting, 

after a lively discussion was found to be actually zero.  However this cancellation is characteristic for a linear in 

momentum spin band splitting.  For other types of splitting the intrinsic mechanism does exist. 
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mechanical approach.  Obviously the concept of the wave packet displacement should work best of 
all in the classical limit.  A more detailed discussion can be found in [25]. 
 
     Spin asymmetry in electron scattering.  Mott has shown [19, 20], that spin-orbit interaction 
results in an asymmetric scattering of polarized electrons. If a polarized electron beam hits a target, it 
will deviate in a direction depending on the sign of polarization (similar to a spinning tennis ball in 
air). The Mott detectors based on this effect are used in high-energy facilities to analyse the electron 
spin polarization. 
     The scattering of electrons by a charged center is schematically depicted in Fig. 3. The most 
important element for us is the magnetic field B existing in the electron's moving frame and seen by 
the electron spin. This field is perpendicular to the plane of the electron trajectory and has opposite 
signs for electrons moving to the right and to the left of the charged center.  The Zeeman energy of 
the electron spin in this field is, in fact, the spin-orbit interaction. 
     Simply looking at Fig. 3, one can make the following observations: 
 

 
    Fig. 3. Schematics of electron scattering by a negative charge. The electron spin sees a magnetic field B ~ v × 
E perpendicular to the plane of the electron trajectory. Note that this magnetic field has opposite directions for 
electrons scattered to the left and to the right 
 
Electron spin rotates. If the electron spin is not exactly perpendicular to the trajectory plane, it will 
make a precession around B during the time of collision. The angle of spin rotation during an 
individual collision depends on the impact parameter and on the orientation of the trajectory plane 
with respect to spin. This precession is at the origin of the Elliott-Yafet mechanism of spin 
relaxation.  
 
The Scattering Angle Depends on Spin. The magnetic field B in Fig. 3 is inhomogeneous in space 
because the electric field E is non-uniform and also because the velocity v changes along the 
trajectory.  
For this reason, there is a spin-dependent force (proportional to the gradient of the Zeeman energy), 
which acts on the electron. As a consequence, a left-right asymmetry in scattering of electrons with a 
given spin appears. This is the Mott effect, or skew scattering, resulting, among other things, in the 
Anomalous Hall Effect. If the incoming electrons are not polarized, the same spin asymmetry in 
scattering will result in separation of spin-up and spin-down electrons. Spin-ups will go to the right, 
while spin-downs will go to the left, which means that a spin current in the direction perpendicular to 
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the incoming flux will appear (the Spin Hall Effect). 
 
Spin rotation is correlated with scattering. As seen from Fig. 3, the spin rotation around the field B 
is correlated with scattering. If the spin on the right trajectory (corresponding to scattering to the 
right) is rotated clockwise, then the spin on the left trajectory (scattered to the left) is rotated counter-
clockwise.  
     Let us see what happens if the incoming beam (x axis) is polarized along the y axis in the 
trajectory plane, i.e. characterized by a spin current qxy. After scattering, the electrons going to the 
right will have some spin component along the x axis, while the electrons going to the left will have 
an x component of the opposite sign!  This means that scattering transforms the initial spin current 
qxy to qyx.  Similarly,    qxx will transform to – qyy .  
     Such an analysis shows that during the scattering process the initial spin current qij

(0) generates a 
new spin current qij according to the rule: 
 
     qji

(0) – δijqkk
(0)  → qij

 
. 

 
Thus the correlation between spin rotation and the direction of scattering gives a physical reason for 
the additional terms in Eq. 6 describing the swapping of spin currents (see above). Presumably, any 
mechanism leading to the Spin Hall Effect will also contribute to such a transformation of spin 
currents. 
     The general expressions for the kinetic coefficients in Eqs. 7 through the scattering amplitude 
were derived in [2]. The effect of skew scattering appears only beyond the Born approximation. In 
contrast, the swapping of spin currents is a more robust effect: it exists already in the Born 
approximation.  
 
     Classical mechanics of a spinning particle.  The effective mass Hamiltonian describing the spin-
orbit interaction is conventionally written as 
 
     Hso = 2λ(k×gradV)s ,    (14) 
 
where k is the electron wave vector, s = σ/2 is the electron spin operator,  V(r) is the electron 
potential energy, and λ is a constant defining the strength of spin-orbit interaction. In semiconductors 
with the band structure of GaAs, in the limit when the effective mass m is small, the Kane model 
gives λ = ħ2/(4mEg) for ∆ >> Eg

 
and λ =(ħ2/(3mEg)( ∆/Eg)  for ∆ << Eg

 
, where ∆  is the spin-orbit 

splitting of the valence band and Eg  is the forbidden gap. 
    We can eliminate the Planck constant by rewriting Eq. 14 in the form 
  
     Hso = A(p×gradV)S ,    (15) 
 
Here we have introduced the constant A = 2λ/ħ2 with the dimension (momentum)–2

 
and the 

dimensional intrinsic angular momentum of the electron S=ħs, p=ħk is the electron momentum.  
     We can now right down the classical Hamilton equations, corresponding to the Hamilton function 
H = p2/(2m) + V(r) + Hso

 
: 

 
    dr/dt = p/m+A(gradV×S),    (16) 
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    dp/dt = −grad [V+A(p×gradV)S ],   (17) 
 
    dS/dt = A(p×gradV)×S.    (18) 
 
     These equations can be applied to a classical object with an internal angular momentum S  (e.g. a 
tennis ball, with an appropriate choice of the constant A). Obviously, they are identical to the 
corresponding quantum-mechanical operator equations. Note, that the observable quantities are r and 
v=dr/dt, not the canonical momentum p. Therefore, it may be useful to rewrite these equations in 
form of Newton's law for the variables r and v. In the two-dimensional case one obtains: 
 
    mdv/dt = − gradV+m A(v×S) ∆2V,   (19) 
 
where ∆2 stands for the two-dimensional Laplacian. A similar, but more complicated, equation can 
be easily derived for the three-dimensional case.  
     One can see from Eq. 19 that in the two-dimensional case the role of the spin-orbit interaction for 
the particle motion reduces to the action of an effective inhomogeneous magnetic field directed 
along S and proportional to ∆2V.   
     One of the consequences of Eq. 19 is that the accelerated motion of an electron in a uniform 
electric field (V=eEr) is not modified by spin-orbit interaction.  The opposite statement can be 
frequently found in the literature. Looking at the "anomalous velocity'' (the second term in Eq. 16) 
one can be tempted to claim the existence of a transverse velocity eAE×S. This is an illusion: the 
transverse to the electric field component of p being conserved (see Eq. 17), the transverse 
component of velocity is also a constant. This constant is equal to the initial value of the transverse 
velocity, exactly like in the absence of spin-orbit interaction. 4 
     The wrong result can be obtained in the simplest way by using Eqs. 16, 17 and introducing the 
momentum relaxation in the Drude-like equations: 
 
   dp/dt =−eE−p/τp  (wrong!),        (20) 
   v = p/m+eAE×S . 
 
Then in the steady state one immediately obtains the famous expression eAE×S for the transverse to 
the electric field velocity. The same wrong result can be obtained by solving the Boltzmann 
equation, or by using more sophisticated theoretical techniques, like Keldysh formalism.  The more 
sophisticated and non-transparent the theory is, the more retarded and advanced Green functions are 
involved, the more difficult it becomes to discover the mistake, which consists in the assumption 
implicit in Eq. (20) that it is the transverse component of the canonical momentum p, which decays 
to zero due to collisions. In fact, it is the transverse velocity, which decays to zero, so that the correct 
                                                 
4   Interestingly, the final result of the side jump theory is the existence of the average transverse velocity of 
electrons equal to the same value eAE×S, independently of the nature of the scattering centers and their 
concentration. This bizarre feature of the side-jump mechanism has caused many discussions, see for example the 
polemic between Smit and Berger [27-30].  We note that so far there is no regular way of calculating the transverse 
current due to this mechanism, which in fact relies on a correction to the Boltzmann equation (one of many 
corrections) on the order of d/l, where d is the scattering diameter and l is the mean free path. It can be shown [25] 
that for classical scattering the ratio of the side jump and the skew scattering contributions is on the order of d/l.  
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equation is 
 
   dv/dt =−eE/m−v/τp ,      (21)  

             

   
which gives a zero transverse velocity in the steady state. 
     This is no longer true if the electric field is time-dependent (or if the spin-orbit interaction 
contains powers of p higher than one). For a time dependent E(t) instead of Eq. 21 we will have: 
 
   dv/dt =−eE/m+eA(dE/dt×S)−v/τp .    (22) 
 
  
Now, for E (t)=Ecos(ωt) in the stationary state there will exist an oscillating transverse velocity 
proportional to ωτp .  
 
 
Conclusions 
 
   The Spin Hall Effect is a new transport phenomenon, predicted a long time ago but observed only 
in recent years. It was experimentally studied in three- and two-dimensional semiconductors samples 
[6, 7, 30-33]. The Inverse Spin Hall Effect was seen in semiconductors [4, 5, 31], as well as in 
metals [34, 35]. Finally, it is important that these effects are observable not only at cryogenic, but 
also at room temperature [36]. However, the number of experimental papers is still about two orders 
of magnitude less than the number of theoretical ones. At present, it is difficult to predict whether 
this effect will have any practical applications, as many people believe, or it will belong only to 
fundamental research as a tool for studying spin interactions in solids.  
     The Spin Hall Effect shares with the long-studied Anomalous Hall Effect an uncertainty about its 
microscopic origin. Let us hope that future, primarily experimental, but also theoretical work will 
help to elucidate this problem. 
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