You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 August 2008Coupling of light scattered by nanoparticles into waveguide modes in quantum-well solar cells
We describe experimental and theoretical analysis of coupling of light scattered by metal or dielectric nanoparticles into
waveguide modes of InP/InGaAsP quantum-well solar cells. The integration of metal or dielectric nanoparticles above
the quantum-well solar cell device is shown to couple normally incident light into lateral optical propagation paths, with
optical confinement provided by the refractive index contrast between the quantum-well layers and surrounding material.
Photocurrent response spectra yield clear evidence of scattering of photons into the multiple-quantum-well waveguide
structure, and consequently increased photocurrent generation, at wavelengths between the band gaps of the barrier and
quantum-well layers. With minimal optimization, a short-circuit current density increase of 12.9% and 7.3% and power
conversion efficiency increases of 17% and 1% are observed for silica and Au nanoparticles, respectively. A theoretical
approach for calculating the optical coupling is described, and the resulting analysis suggests that extremely high
coupling efficiency can be attained in appropriately designed structures.
The alert did not successfully save. Please try again later.
Daniel Derkacs, Winnie V. Chen, Peter Matheu, Swee H. Lim, Paul K. L. Yu, E. T. Yu, "Coupling of light scattered by nanoparticles into waveguide modes in quantum-well solar cells," Proc. SPIE 7047, Nanoscale Photonic and Cell Technologies for Photovoltaics, 704703 (28 August 2008); https://doi.org/10.1117/12.799666