16 September 2008 Comparison between x-ray tube-based and synchrotron radiation-based μCT
Author Affiliations +
Abstract
Nowadays, X-ray tube-based high-resolution CT systems are widely used in scientific research and industrial applications. But the potential, convenience and economy of these lab systems is often underestimated. The present paper shows the comparison of sophisticated conventional μCT with synchrotron radiation-based μCT (SRμCT). The different aspects and characteristics of both approaches like spatial and density resolution, penetration depth, scanning time or sample size is described in detail. The tube-based μCT measurements were performed with a granite-based nanotom®-CT system (phoenix|x-ray, Wunstorf, Germany) equipped with a 180 kV - 15 W high-power nanofocus® tube with tungsten or molybdenum targets. The tube offers a wide range of applications from scanning low absorbing samples in nanofocus® mode with voxel sizes below 500 nm and highly absorbing objects in the high power mode with focal spot and voxel sizes of a few microns. The SRμCT measurements were carried out with the absorption contrast set-up at the beamlines W 2 and BW 2 at HASYLAB/DESY, operated by the GKSS Research Center. The range of samples examined covers materials of very different absorption levels and related photon energies for the CT scans. Both quantitative and qualitative comparisons of CT scans using biomedical specimens with rather low X-ray absorption such as parts of the human spine as well as using composites from the field of materials science are shown.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Oliver Brunke, Kathleen Brockdorf, Susanne Drews, Bert Müller, Tilman Donath, Julia Herzen, Felix Beckmann, "Comparison between x-ray tube-based and synchrotron radiation-based μCT", Proc. SPIE 7078, Developments in X-Ray Tomography VI, 70780U (16 September 2008); doi: 10.1117/12.794789; https://doi.org/10.1117/12.794789
PROCEEDINGS
12 PAGES


SHARE
Back to Top