You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 December 2008Influences of various defects on extreme ultra-violet mask
Mask defect is one of the biggest problems in Extreme Ultraviolet Lithography (EUV) technology. EUV mask must be free of small defects, requiring development of new inspection tools and low defect fabrication processes. So, we studied the influences of the defects on the mask for 22 nm line and space pattern. First, we changed the light quality caused by the various wavelength shift, incident angle, and the defect material with different refractive index. Second, we changed the defect size from 20 nm to 16 nm because 18 nm defect is assumed to a critical defect size for 22 nm node. Third, we also changed the defect positions; on top of the absorber, on the valley of the absorber, and at the sides of the absorber. Finally, we simulated the influence for the different shaped defect. A square pillar defect shows very different behavior compared to the more realistic round shaped defect. Defect of higher refractive index gives little influence, while defect of lower refractive index gives larger influence. A more realistic elliptical shaped defect gives less influence compared to square shaped defect. All the defect and EUV parameters will influence to the printability of the defect, but more study is needed to judge whether a certain defect can influence the printed pattern.
The alert did not successfully save. Please try again later.
Eun-Jin Kim, Jee-Hye You, Jung-Youl Lee, Deog-Bae Kim, Jae-Hyun Kim, Hye-Keun Oh, "Influences of various defects on extreme ultra-violet mask," Proc. SPIE 7140, Lithography Asia 2008, 71401N (4 December 2008); https://doi.org/10.1117/12.804570