Translator Disclaimer
2 February 2009 Investigation of semi-insulating gallium arsenide photoconductive photodetectors
Author Affiliations +
Abstract
The structure and working mechanism of a photoconductive photodetector are compared with a p+-i-n+ (PIN) photodiode and a metal-semiconductor-metal (MSM) photodetector which is regarded as two back-to-back Schottky barrier photodiodes. Because a photoconductive photodetector has the features of high critical field strength, especially no junction capacitance and no dead zone, it has the main merits of high signal-noise ratio, ultrafast response and high quantum efficiency. We fabricate two photoconductive photodetectors in a lateral configuration on a semi-insulating (SI) gallium arsenide (GaAs) wafer, which wavelength range of response is from UV to 1.73μm due to two-photon absorption. It is shown by the volt-ampere characteristics curve that the dark leakage current of 30μm-gap SI GaAs photoconductive photodetector at a bias field of 66 V/cm is less than 1.2 μA. Our experiment has demonstrated that SI GaAs photoconductive photodetectors are noteworthily superior to high-speed Si PIN photodetectors to measure ultrashort pulse lasers with the properties of ultrafast response, ultrawide spectral range, high signal-noise ratio and ease of fabrication.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Xinmei Wang, Wei Shi, Lei Hou, Deming Ma, and Guanghui Qu "Investigation of semi-insulating gallium arsenide photoconductive photodetectors", Proc. SPIE 7157, 2008 International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications, 71570B (2 February 2009); https://doi.org/10.1117/12.811976
PROCEEDINGS
7 PAGES


SHARE
Advertisement
Advertisement
Back to Top