23 February 2009 VCSEL technology for medical diagnostics and therapeutics
Author Affiliations +
Proceedings Volume 7180, Photons and Neurons; 71800T (2009) https://doi.org/10.1117/12.815307
Event: SPIE BiOS, 2009, San Jose, California, United States
In the 1990's a new laser technology, Vertical Cavity Surface Emitting Lasers, or VCSELs, emerged and transformed the data communication industry. The combination of performance characteristics, reliability and performance/cost ratio allowed high data rate communication to occur over short distances at a commercially viable price. VCSELs have not been widely used outside of this application space, but with the development of new attributes, such as a wider range of available wavelengths, the demonstration of arrays of VCSELs on a single chip, and a variety of package form factors, VCSELs can have a significant impact on medical diagnostic and therapeutic applications. One area of potential application is neurostimulation. Researchers have previously demonstrated the feasibility of using 1850nm light for nerve stimulation. The ability to create an array of VCSELs emitting at this wavelength would allow significantly improved spatial resolution, and multiple parallel channels of stimulation. For instance, 2D arrays of 100 lasers or more can be integrated on a single chip less than 2mm on a side. A second area of interest is non-invasive sensing. Performance attributes such as the narrow spectral width, low power consumption, and packaging flexibility open up new possibilities in non-invasive and/or continuous sensing. This paper will suggest ways in which VCSELs can be implemented within these application areas, and the advantages provided by the unique performance characteristics of the VCSEL. The status of VCSEL technology as a function of available wavelength and array size and form factors will be summarized.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
M. K. Hibbs-Brenner, M. K. Hibbs-Brenner, K. L. Johnson, K. L. Johnson, M. Bendett, M. Bendett, "VCSEL technology for medical diagnostics and therapeutics", Proc. SPIE 7180, Photons and Neurons, 71800T (23 February 2009); doi: 10.1117/12.815307; https://doi.org/10.1117/12.815307

Back to Top