24 February 2009 Determine scattering coefficient and anisotropy of scattering of tissue phantoms using reflectance-mode confocal microscopy
Author Affiliations +
Abstract
Different techniques have been developed to determine the optical properties of turbid media, which include collimated transmission, diffuse reflectance, adding-doubling and goniometry. While goniometry can be used to determine the anisotropy of scattering (g), other techniques are used to measure the absorption coefficient and reduced scattering coefficient (μs(1-g)). But separating scattering coefficient (μs) and anisotropy of scattering from reduced scattering coefficient has been tricky. We developed an algorithm to determine anisotropy of scattering from the depth dependent decay of reflectance-mode confocal scanning laser microscopy (rCSLM) data. This report presents the testing of the algorithm on tissue phantoms with different anisotropies (g = 0.127 to 0.868, at 488nm wavelength). Tissue phantoms were made from polystyrene microspheres (6 sizes 0.1-0.36 μm dia.) dispersed in both aqueous solutions. Three dimensional images were captured. The rCSLM-signal followed an exponential decay as a function of depth of the focal volume, R(z) = ρexp(-μz) where ρ (dimensionless, ρ=1 for a mirror) is the local reflectivity and μ [cm-1] is the exponential decay constant. The theory was developed to uniquely map the experimentally determined μ and ρ into the optical scattering properties μs and g. The values of μs and g depend on the composition and microstructure of tissues, and allow characterization of a tissue.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ravikant Samatham, Steven L. Jacques, "Determine scattering coefficient and anisotropy of scattering of tissue phantoms using reflectance-mode confocal microscopy", Proc. SPIE 7187, Biomedical Applications of Light Scattering III, 718711 (24 February 2009); doi: 10.1117/12.809684; https://doi.org/10.1117/12.809684
PROCEEDINGS
8 PAGES


SHARE
Back to Top