You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 January 1987Recent Advances in Fiber Optic Coupler Technology
The performance requirements and device specifications of single mode couplers have been changing rapidly in recent years. This paper reviews the present state of the art in this technology and introduces new device concepts which rely on the fuse-taper technology in their fabrication process. Details will be given of the fabrication and application of single mode wavelength division multiplexers which have an insertion loss below 0.5 dB and have a 20 dB isolation over a 30 nm operating wavelength range. Wavelength division multiplexers with a narrow wavelength separation, <5 nm, will also be described in terms of their fabrication and application. Details of the utilization and performance of concatenated wavelength division multiplexers as filters for uni- and bi-directional communication will also be presented. Finally, techniques for reducing the wavelength sensitivity of the coupling ratio in single mode couplers will be discussed which result in the development of a broad band coupler, BBC.
The alert did not successfully save. Please try again later.
Michael Corke, Kevin L. Sweeney, Kevin M. Schmidt, "Recent Advances in Fiber Optic Coupler Technology," Proc. SPIE 0722, Components for Fiber Optic Applications, (14 January 1987); https://doi.org/10.1117/12.937639