Contents

<table>
<thead>
<tr>
<th>Conference Committee</th>
<th>ix</th>
</tr>
</thead>
</table>

THREE-DIMENSIONAL PHOTONIC CRYSTAL STRUCTURES

<table>
<thead>
<tr>
<th>7223 04</th>
<th>Three-dimensional photonic crystal demultiplexers [7223-03]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. Badieirostami, B. Momeni, A. Adibi, Georgia Institute of Technology (United States)</td>
</tr>
</tbody>
</table>

DISPERSIVE AND NONLINEAR PROPERTIES OF PHOTONIC CRYSTALS

<table>
<thead>
<tr>
<th>7223 06</th>
<th>On-chip spectrometers for visible and infrared sensing applications [7223-05]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B. Momeni, E. Shah Hosseini, A. Atabaki, Q. Li, M. Soltani, A. Adibi, Georgia Institute of Technology (United States)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7223 08</th>
<th>On the power-bandwidth trade-off in bistable photonic switches [7223-07]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. Naqavi, H. Abediasl, K. Mehrany, S. Khorasani, Sharif Univ. of Technology (Iran, Islamic Republic of); M. R. Chamanzar, A. Adibi, Georgia Institute of Technology (United States)</td>
</tr>
</tbody>
</table>

FABRICATION OF PHOTONIC CRYSTAL STRUCTURES

<table>
<thead>
<tr>
<th>7223 0A</th>
<th>Fabrication of 3D high index photonic crystals by holographic lithography and their fidelity (Invited Paper) [7223-09]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X. Zhu, Y. Xu, S. Yang, Univ. of Pennsylvania (United States)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7223 0C</th>
<th>Tuning of narrow-bandwidth photonic crystal devices etched in InGaAsP planar waveguides by liquid crystal infiltration [7223-11]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H. H. J. E. Kicken, I. Barbu, S. P. Kersten, M. A. Dündar, R. W. van der Heijden, F. Karouta, R. Nötzel, Eindhoven Univ. of Technology (Netherlands); E. van der Drift, H. W. M. Salemink, Delft Univ. of Technology (Netherlands)</td>
</tr>
</tbody>
</table>

PHONONIC CRYSTAL STRUCTURES

<table>
<thead>
<tr>
<th>7223 0E</th>
<th>Evanescent Bloch waves in phononic crystals (Invited Paper) [7223-13]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V. Laude, Institut Femto-ST, Univ. de Franche-Comté, CNRS (France); B. Aoubiza, Lab. de Mathématiques de Besançon, Univ. de Franche-Comté, CNRS (France); Y. Achaoui, S. Benchabane, Institut Femto-ST, Univ. de Franche-Comté, CNRS (France); A. Khelif, Institut Femto-ST, Univ. de Franche-Comté, CNRS (France) and Georgia Institute of Technology-CNRS Joint Lab. (United States)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7223 0F</th>
<th>Band structure and wave guiding in a phononic crystal constituted by a periodic array of dots deposited on a homogeneous plate (Invited Paper) [7223-14]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B. Djafari-Rouhani, Y. Pennec, H. Larabi, Institut d'Electronique de Microélectronique et de Nanotechnologie, CNRS, Univ. de Lille 1 (France)</td>
</tr>
</tbody>
</table>
MODELING AND SIMULATION OF PHOTONIC CRYSTAL STRUCTURES

7223 0G
Band gaps and waveguiding of Lamb waves in stubbed phononic plates (Invited Paper)
[7223-15]
T.-T. Wu, T.-C. Wu, J.-C. Hsu, National Taiwan Univ. (Taiwan)

7223 0H
Two-dimensional phononic crystal slab defect mode micromechanical resonators
[7223-16]
S. Mohammadi, A. A. Eftekhar, Georgia Institute of Technology (United States); A. Khelif, Georgia Institute of Technology-CNRS Joint Lab. (United States); W. D. Hunt, A. Adibi, Georgia Institute of Technology (United States)

PHOTONIC CRYSTAL CAVITIES AND LIGHT EMITTERS I

7223 0W
Design and simulation of nanowire-based high Quality factor nanocavities
[7223-31]
Y. Zhang, M. Lončar, Harvard Univ. (United States)

7223 0Y
Controlled coupling of nanoparticles to photonic crystal cavities
[7223-33]
M. Barth, J. Stingl, Humboldt-Univ. zu Berlin (Germany); N. Nüsse, B. Löchel, BESSY GmbH (Germany); O. Benson, Humboldt-Univ. zu Berlin (Germany)
Quantum well design and diffraction efficiency of quantum well light emitting diode [7223-37]
M. Khoshnegar, A. Eftekharian, M. Sodagar, S. Khorasani, Sharif Univ. of Technology (Iran, Islamic Republic of); A. Adibi, Georgia Institute of Technology (United States)

On-chip photonic crystal-based micro-interferometers with high spectral sensitivity [7223-39]
M. Chamanzar, B. Momeni, A. Adibi, Georgia Institute of Technology (United States)

Cherenkov radiation and photonic crystals [7223-44]
R. C. Gauthier, Carleton Univ. (Canada)

Ultra-small coherent thermal conductance using multi-layer photonic crystal [7223-43]
W. T. Lau, J.-T. Shen, G. Veronis, S. Fan, Stanford Univ. (United States)

Discretely disordered photonic bandgap structures: a more accurate invariant measure calculation [7223-45]
G. J. Kissel, Univ. of Southern Indiana (United States)

Backward scattering effect of aligned carbon nanotube arrays [7223-47]
P. Wu, New Span Opto-Technology Inc. (United States); Z. Ren, Boston College (United States); M. R. Wang, New Span Opto-Technology Inc. (United States)

Midinfrared (λ = 3.6 µm) LEDs and arrays on InGaAsSb with photonic crystals [7223-35]

Two-dimensional photonic crystals with anisotropic unit cells imprinted from PDMS membranes under elastic deformation [7223-48]
X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J. M. Kikkawa, S. Yang, Univ. of Pennsylvania (United States)

Nanophotonic quantum dot embedded in photonic crystals using a coherent control with a high spectrum resolution [7223-51]
F. Matsuoka, Hokkaido Univ. (Japan); H. Nihei, Health Sciences Univ. of Hokkaido (Japan); A. Okamoto, Hokkaido Univ. (Japan)

Author Index
Conference Committee

Symposium Chair

James G. Grote, Air Force Research Laboratory (United States)

Symposium Cochair

E. Fred Schubert, Rensselaer Polytechnic Institute (United States)

Program Track Chair

Ali Adibi, Georgia Institute of Technology (United States)

Conference Chairs

Ali Adibi, Georgia Institute of Technology (United States)
Shawn-Yu Lin, Rensselaer Polytechnic Institute (United States)
Axel Scherer, California Institute of Technology (United States)

Program Committee

Douglas C. Allan, Corning Inc. (United States)
Shanhui Fan, Stanford University (United States)
Maryanne C. J. Large, The University of Sydney (Australia)
Susumu Noda, Kyoto University (Japan)
Masaya Notomi, NTT Atsugi R & D Center (Japan)
Ekmel Ozbay, Bilkent University (Turkey)
Dennis W. Prather, University of Delaware (United States)
William J. Wadsworth, University of Bath (United Kingdom)
Yong Xu, Virginia Polytechnic Institute and State University (United States)
Eli Yablonovitch, University of California, Berkeley (United States)

Session Chairs

1 Three-dimensional Photonic Crystal Structures
 Ali Adibi, Georgia Institute of Technology (United States)

2 Dispersive and Nonlinear Properties of Photonic Crystals
 Xuelian Zhu, University of Pennsylvania (United States)

3 Fabrication of Photonic Crystal Structures
 Thomas F. Krauss, University of St. Andrews (United Kingdom)
4 Phononic Crystal Structures
Abdelkrim Khelif, Institut Femto-ST, Université Franche-Comté, CNRS (France) and Georgia Institute of Technology-CNRS Joint Laboratory (United States)

5 Special Session on Plasmonics I
Ali Adibi, Georgia Institute of Technology (United States)

6 Special Session on Plasmonics II
Harry A. Atwater, Jr., California Institute of Technology (United States)

7 Modeling and Simulation of Photonic Crystal Structures
Babak Momeni, Georgia Institute of Technology (United States)

8 Photonic Crystal Cavities and Light Emitters I
Allan Chang, Lawrence Berkeley National Laboratory (United States)

9 Photonic Crystal Cavities and Light Emitters II
Benjamin J. Eggleton, The University of Sydney (Australia)

10 Novel Effects and Applications in Photonic Crystal Structures I
Axel Scherer, California Institute of Technology (United States)

11 Novel Effects and Applications in Photonic Crystal Structures II
Wah Tung Lau, Stanford University (United States)
Introduction

The field of photonic crystals has grown considerably during the last few years. Several research groups all over the world have produced interesting results in understanding the basic concepts as well as in fabrication and characterization of photonic crystals. The produced results have appeared in high-caliber journals such as Nature and Science as well as in specialized international conferences. More recently, activities in phononic crystals have resulted in very interesting acoustic phenomena and devices using these periodic structures.

This year was another great experience running the SPIE Photonic and Phononic Crystal Materials and Devices conference at Photonics West in San Jose, California. The main goal of the conference chairs was to bring together the scientific output of as many active groups in the field as possible. We tried to involve as many world-known experts in fabrication, simulation, and characterization of photonic and phononic crystals as possible. We also added two special sessions on plasmonics with some of the leaders of the field presenting their work.

As in previous years, the conference was very successful in bringing together researchers from a wide geographical area. The conference drew close to fifty presentations on the various aspects of photonic crystals. All conference sessions drew large and vocal crowds. The attitude of the conference was very positive with a great deal of excitement about the future of photonic and phononic crystals.

Special thanks are due to all invited speakers who contributed such exciting talks. Special thanks are also due to the program committee and session chairs, and to all presenters and participants for making this conference a success. We look forward to again meeting and hearing of each other’s progress at Photonic West next year.

Ali Adibi
Shawn-Yu Lin
Axel Scherer