20 January 2009 An adaptive spread spectrum (SS) synchronous data hiding strategy for scalable 3D terrain visualization
Author Affiliations +
The diversity of clients in today's network environment compels us to think about solutions that more than satisfy their needs according to their resources. For 3D terrain visualization this translates into two main requirements, namely the scalability and synchronous unification of a disparate data that requires at least two files, the texture image and its corresponding digital elevation model (DEM). In this work the scalability is achieved through the multiresolution discrete wavelet transform (DWT) of the JPEG2000 codec. For the unification of data, a simple DWT-domain spread spectrum (SS) strategy is employed in order to synchronously hide the DEM in the corresponding texture while conserving the JPEG2000 standard file format. Highest possible quality texture is renderable due to the reversible nature of the SS data hiding. As far as DEM quality is concerned, it is ensured through the adaptation of synchronization in embedding that would exclude some highest frequency subbands. To estimate the maximum tolerable error in the DEM according to a given viewpoint, a human visual system (HVS) based psycho-visual analysis is being presented. This analysis is helpful in determining the degree of adaptation in synchronization.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
K. Hayat, K. Hayat, W. Puech, W. Puech, G. Gesquière, G. Gesquière, "An adaptive spread spectrum (SS) synchronous data hiding strategy for scalable 3D terrain visualization", Proc. SPIE 7243, Visualization and Data Analysis 2009, 724308 (20 January 2009); doi: 10.1117/12.811209; https://doi.org/10.1117/12.811209


Back to Top