Translator Disclaimer
27 March 2009 Voxel-based discriminant map classification on brain ventricles for Alzheimer's disease
Author Affiliations +
Proceedings Volume 7259, Medical Imaging 2009: Image Processing; 72591W (2009) https://doi.org/10.1117/12.810908
Event: SPIE Medical Imaging, 2009, Lake Buena Vista (Orlando Area), Florida, United States
Abstract
One major hallmark of the Alzheimer's disease (AD) is the loss of neurons in the brain. In many cases, medical experts use magnetic resonance imaging (MRI) to qualitatively measure the neuronal loss by the shrinkage or enlargement of the structures-of-interest. Brain ventricle is one of the popular choices. It is easily detectable in clinical MR images due to the high contrast of the cerebro-spinal fluid (CSF) with the rest of the parenchyma. Moreover, atrophy in any periventricular structure will directly lead to ventricle enlargement. For quantitative analysis, volume is the common choice. However, volume is a gross measure and it cannot capture the entire complexity of the anatomical shape. Since most existing shape descriptors are complex and difficult-to-reproduce, more straightforward and robust ways to extract ventricle shape features are preferred in the diagnosis. In this paper, a novel ventricle shape based classification method for Alzheimer's disease has been proposed. Training process is carried out to generate two probability maps for two training classes: healthy controls (HC) and AD patients. By subtracting the HC probability map from the AD probability map, we get a 3D ventricle discriminant map. Then a matching coefficient has been calculated between each training subject and the discriminant map. An adjustable cut-off point of the matching coefficients has been drawn for the two classes. Generally, the higher the cut-off point that has been drawn, the higher specificity can be achieved. However, it will result in relatively lower sensitivity and vice versa. The benchmarked results against volume based classification show that the area under the ROC curves for our proposed method is as high as 0.86 compared with only 0.71 for volume based classification method.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jingnan Wang, Gerard de Haan, Devrim Unay, Octavian Soldea, and Ahmet Ekin "Voxel-based discriminant map classification on brain ventricles for Alzheimer's disease", Proc. SPIE 7259, Medical Imaging 2009: Image Processing, 72591W (27 March 2009); https://doi.org/10.1117/12.810908
PROCEEDINGS
8 PAGES


SHARE
Advertisement
Advertisement
Back to Top