You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 April 2009Tactile display with dielectric multilayer elastomer actuatorsq
Tactile perception is the human sensation of surface textures through the vibrations generated by stroking a finger over
the surface. The skin responds to several distributed physical quantities. Perhaps the most important are high-frequency
vibrations, pressure distributions (static shape) and thermal properties. The integration of tactile displays in man-machine
interfaces promises a more intuitive handling. For this reason many tactile displays are developed using different
technologies.
We present several state-of-the-art tactile displays based on different types of dielectric elastomer actuators to clarify the
advantages of our matrix display based on multilayer technology. Using this technology perpendicular and hexagonal
arrays of actuator elements (tactile stimulators) can be integrated into a PDMS substrate. Element diameters down to
1 mm allow stimuli at the range of the human two-point-discrimination threshold. Driving the elements by column and
row addressing enables various stimulation patterns with a reduced number of feeding lines.
The transient analysis determines charging times of the capacitive actuators depending on actuator geometry and
material parameters. This is very important to ensure an adequate dynamic characteristic of the actuators to stimulate the
human skin by vibrations. The suitability of multilayer dielectric elastomer actuators for actuation in tactile displays has
been determined. Beside the realization of a static tactile display - where multilayer DEA are integrated as drives for
movable contact pins - we focus on the direct use of DEA as a vibrotactile display.
Finally, we present the scenario and achieved results of a recognition threshold test. Even relative low voltages in the
range of 800 V generate vibrations with 100% recognition ratio within the group of participants. Furthermore, the
frequency dependent characteristic of the determined recognition threshold confirms with established literature.
The alert did not successfully save. Please try again later.
Marc Matysek, Peter Lotz, Helmut F. Schlaak, "Tactile display with dielectric multilayer elastomer actuators," Proc. SPIE 7287, Electroactive Polymer Actuators and Devices (EAPAD) 2009, 72871D (6 April 2009); https://doi.org/10.1117/12.819217