Translator Disclaimer
6 May 2009 HgCdTe at Teledyne
Author Affiliations +
Abstract
Since the late '60's Teledyne Imaging Sensors (TIS-formerly Rockwell Science Center) has developed IR sensor technology and produced IR sensors for both military and commercial applications. In the late '70's, after excursions into the Pb-salts and InAsSb alloys, TIS began to study HgCdTe and has pursued this materials system aggressively ever since. Beginning with Te-corner liquid phase epitaxy (LPE) by dipping, tipping, and sliding, Teledyne migrated through metal organic chemical vapor deposition (MOCVD)-a very challenging growth technique-to molecular beam epitaxy (MBE), where we have found a reliable and flexible technique suited to the most advanced architectures. We used substrates from Cd(Zn)Te to sapphire, GaAs, and silicon. Ion implantation and planar diode architectures have allowed high density device geometries exploited in our double layer planar heterostructure (DLPH) single color diodes and our simultaneous multispectral integrated technology (SUMIT) two color diodes. The performance of these devices equals or exceeds that of all baseline MCT devices reported by other techniques. These devices have dark currents that are readily characterized over 13 orders of magnitude by a simple heuristic, "Rule 07," for a wide range of temperature and wavelength.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
W. E. Tennant, J. M. Arias, and J. Bajaj "HgCdTe at Teledyne", Proc. SPIE 7298, Infrared Technology and Applications XXXV, 72982V (6 May 2009); https://doi.org/10.1117/12.821350
PROCEEDINGS
11 PAGES


SHARE
Advertisement
Advertisement
RELATED CONTENT

Fifty years of HgCdTe at Texas Instruments and beyond
Proceedings of SPIE (May 07 2009)
HgCdTe on Si for hybrid and monolithic FPAs
Proceedings of SPIE (August 31 1990)
Large-format IRFPA development on silicon
Proceedings of SPIE (October 21 2004)
MBE-grown HgCdTe heterojunction structures for IR FPAs
Proceedings of SPIE (April 11 1996)

Back to Top