You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 April 2009Detector performance in long-distance quantum key distribution using superconducting nanowire single-photon detectors
The recent advances in superconducting nanowire single-photon detector (SNSPD or SSPD) technology has enabled
long distance quantum key distribution (QKD) over an optical fiber. We point out that the performance of SNSPDs play
a crucial role in achieving a secure transmission distance of 100 km or longer. We analyze such an impact from a
simplified model and use it to interpret results from our differential-phase-shift (DPS) QKD experiment. This allows us
to discuss the optimization of the detection time window and the clock frequency given the detector characteristics such
as dark count rate, detection efficiency, and timing jitter.