You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 May 2009Accurate design and modeling of χ(2) nonlinear processes in periodic waveguides by Hertzian potential method
We present in this work the scalar potential formulation of second harmonic generation process in χ(2) nonlinear
analysis. This approach is intrinsically well suited to the application of the concept of circuit analysis and synthesis to
nonlinear optical problems, and represents a novel alternative method in the analysis of nonlinear optical waveguide, by
providing a good convergent numerical solution. The time domain modeling is applied to nonlinear waveguide with
dielectric discontinuities in the hypothesis of quasi phase matching condition in order to evaluate the conversion
efficiency of the second harmonic signal. With the introduction of the presented rigorous time domain method it is
possible to represent the physical phenomena such as light propagation and second harmonic generation process inside a
nonlinear optical device with a good convergent solution and low computational cost. Moreover, this powerful approach
minimizes the numerical error of the second derivatives of the Helmholtz wave equation through the generator
modeling. The novel simulation algorithm is based on nonlinear wave equations associated to the circuital approach
which considers the time-domain wave propagating in nonlinear transmission lines. The transmission lines represent the
propagating modes of the nonlinear optical waveguide. The application of quasi phase matching in high efficiency
second harmonic generation process is analyzed in this work. In particular we model the χ(2) non linear process in an
asymmetrical GaAs slab waveguide with nonlinear core and dielectric discontinuities: in the nonlinear planar
waveguides a fundamental mode at λ=1.55 μm is coupled to a second-harmonic mode (λ=0.775 μm) through an
appropriate nonlinear susceptibility coefficient. The novel method is also applied to three dimensional structures such as
ridge waveguides.
The alert did not successfully save. Please try again later.
Alessandro Massaro, Vittorianna Tasco, Maria Teresa Todaro, Roberto Cingolani, Massimo De Vittorio, Adriana Passaseo, "Accurate design and modeling of chi(2) nonlinear processes in periodic waveguides by Hertzian potential method," Proc. SPIE 7354, Nonlinear Optics and Applications III, 73540Z (19 May 2009); https://doi.org/10.1117/12.820439