19 May 2009 Parabolic pulse propagation in mean-zero dispersion-managed transmission systems and mode-locked laser cavities
Author Affiliations +
Proceedings Volume 7354, Nonlinear Optics and Applications III; 735416 (2009); doi: 10.1117/12.823522
Event: SPIE Optics + Optoelectronics, 2009, Prague, Czech Republic
Abstract
Self-similarity is a ubiquitous concept in the physical sciences used to explain a wide range of spatial- or temporalstructures observed in a broad range of applications and natural phenomena. Indeed, they have been predicted or observed in the context of Raman scattering, spatial soliton fractals, propagation in the normal dispersion regime with strong nonlinearity, optical amplifiers, and mode-locked lasers. These self-similar structures are typically long-time transients formed by the interplay, often nonlinear, of the underlying dominant physical effects in the system. A theoretical model shows that in the context of the universal Ginzburg-Landau equation with rapidly-varying, mean-zero dispersion, stable and attracting self-similar pulses are formed with parabolic profiles: the zero-dispersion similariton. The zero-dispersion similariton is the final solution state of the system, not a long-time, intermediate asymptotic behavior. An averaging analysis shows the self-similarity to be governed by a nonlinear diffusion equation with a rapidly-varying, mean-zero diffusion coefficient. Indeed, the leadingorder behavior is shown to be governed by the porous media (nonlinear diffusion) equation whose solution is the well-known Barenblatt similarity solution which has a parabolic, self-similar profile. The alternating sign of the diffusion coefficient, which is driven by the dispersion fluctuations, is critical to supporting the zero-dispersion similariton which is, to leading-order, of the Barenblatt form. This is the first analytic model proposing a mechanism for generating physically realizable temporal parabolic pulses in the Ginzburg-Landau model. Although the results are of restricted analytic validity, the findings are suggestive of the underlying physical mechanism responsible for parabolic (self-similar) pulse formation in lightwave transmission and observed in mode-locked laser cavities.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Brandon G. Bale, J. Nathan Kutz, "Parabolic pulse propagation in mean-zero dispersion-managed transmission systems and mode-locked laser cavities", Proc. SPIE 7354, Nonlinear Optics and Applications III, 735416 (19 May 2009); doi: 10.1117/12.823522; https://doi.org/10.1117/12.823522
PROCEEDINGS
8 PAGES


SHARE
KEYWORDS
Dispersion

Mode locking

Diffusion

Laser resonators

Complex systems

Numerical simulations

Solids

Back to Top