12 August 2009 Imaging and communications through non-Kolmogorov turbulence
Author Affiliations +
Abstract
At present, system design usually assumes the Kolmogorov model of refractive index fluctuation spectra in the atmosphere. However, experimental data indicates that in the atmospheric boundary layer and at higher altitudes the turbulence can be different from Kolmogorov's type. In optical communications, analytical models of mean irradiance and scintillation index have been developed for a traditional Kolmogorov spectrum and must be revised for non-Kolmogorov turbulence. The image quality (resolution, MTF, etc.) is essentially dependent on the properties of turbulent media. Turbulence MTF must be generalized to include non-Kolmogorov statistics. The change in fluctuation correlations of the refractive index can lead to a considerable change in both the MTF form and the resolution value. In this work, on the basis of measurements and model calculations, the influence of non-Kolmogorov turbulence on imaging and communications through the atmosphere is estimated for different scenarios of vertical and slant-path propagation. The atmospheric model of an arbitrary (non-Kolmogorov) spectrum is applied to estimate the statistical quantities associated with optical communication links (e.g., scintillation and fading statistics) and imaging system. Implications can be significant for optical communication, imaging through the atmosphere, and remote sensing.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Norman S. Kopeika, Arkadi Zilberman, Ephim Golbraikh, "Imaging and communications through non-Kolmogorov turbulence", Proc. SPIE 7463, Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation III, 746307 (12 August 2009); doi: 10.1117/12.825914; https://doi.org/10.1117/12.825914
PROCEEDINGS
12 PAGES


SHARE
Back to Top