You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 September 2009Model-based assist feature placement for 32nm and 22nm technology nodes using inverse mask technology
Inverse imaging has been long known to provide a true mathematical solution to the mask
design problem. However, it is often times marred by problems like high run-time, mask
manufacturability costs, and non-invertible models. In this paper, we propose a mask synthesis
flow for advanced lithography nodes, which capitalizes on the inverse mask solution while still
overcoming all the above problems. Our technique uses inverse mask technology (IMT) to
calculate an inverse mask field containing all the useful information about the AF solution. This
field is fed to a polygon placement algorithm to obtain initial AF placements, which are then cooptimized
with the main features during an OPC/AF print-fix routine to obtain the final mask
solution. The proposed flow enables process window maximization via IMT while guaranteeing
fully MRC compliant masks. We present several results demonstrating the superiority of this
approach. We also compare our IMT-AFs with the best AF solution obtained using extensive
brute-force search (via a first principles simulator, S-litho), and prove that our solution is
optimum.