30 October 2009 An efficient and fast global motion estimation algorithm based on motion vector field
Author Affiliations +
Proceedings Volume 7495, MIPPR 2009: Automatic Target Recognition and Image Analysis; 74951B (2009); doi: 10.1117/12.832548
Event: Sixth International Symposium on Multispectral Image Processing and Pattern Recognition, 2009, Yichang, China
Abstract
Global motion estimation (GME) is widely used in image/video processing and various applications. But the accuracy of estimation results is badly influenced by local motion and noises. Furthermore, the conventional GME algorithms in spatial domain usually need a large number of iteration times, which makes computational complexity extremely higher. In this paper, we propose an efficient and fast GME algorithm based on motion vector field, which adaptively selects input pixels for solving transform models. More characteristics of the image are considered, such as the difference between global motion and local motion, the distribution of motion vectors, and macroblock partition modes. The proposed algorithm includes three steps: First, we obtain several sets of pixels by merging similar bins in the histogram of motion vectors and generate a weight map. Second, we choose the cluster with the minimum distribution variance in the image as the cluster representing the global motion. The pixels with higher weights in this cluster are chosen as the input pixels for solving transform models. Finally, we employ the 6-parameter affine model as the transform model and calculate the parameters. Experimental results show that the proposed algorithm is effective and fast.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Pin Lui, Jiaying Liu, Zongming Guo, "An efficient and fast global motion estimation algorithm based on motion vector field", Proc. SPIE 7495, MIPPR 2009: Automatic Target Recognition and Image Analysis, 74951B (30 October 2009); doi: 10.1117/12.832548; https://doi.org/10.1117/12.832548
PROCEEDINGS
8 PAGES


SHARE
KEYWORDS
Motion models

Motion estimation

Affine motion model

Image segmentation

Process modeling

Image classification

Cameras

RELATED CONTENT


Back to Top