You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
31 December 2009Laser damage precursors in fused silica
There is a longstanding, and largely unexplained, correlation between the laser damage susceptibility
of optical components and both the surface quality of the optics, and the presence of near surface
fractures in an optic. In the present work, a combination of acid leaching, acid etching, and confocal
time resolved photoluminescence (CTP) microscopy has been used to study laser damage initiation
at indentation sites. The combination of localized polishing and variations in indentation loads
allows one to isolate and characterize the laser damage susceptibility of densified, plastically flowed
and fractured fused silica. The present results suggest that: 1) laser damage initiation and growth are
strongly correlated with fracture surfaces, while densified and plastically flowed material is
relatively benign, and 2) fracture events result in the formation of an electronically defect rich
surface layer which promotes energy transfer from the optical beam to the glass matrix.
The alert did not successfully save. Please try again later.
P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, L. L. Wong, "Laser damage precursors in fused silica," Proc. SPIE 7504, Laser-Induced Damage in Optical Materials: 2009, 75040X (31 December 2009); https://doi.org/10.1117/12.836986