Translator Disclaimer
12 March 2010 Towards analysis of growth trajectory through multimodal longitudinal MR imaging
Author Affiliations +
The human brain undergoes significant changes in the first few years after birth, but knowledge about this critical period of development is quite limited. Previous neuroimaging studies have been mostly focused on morphometric measures such as volume and shape, although tissue property measures related to the degree of myelination and axon density could also add valuable information to our understanding of brain maturation. Our goal is to complement brain growth analysis via morphometry with the study of longitudinal tissue property changes as reflected in patterns observed in multi-modal structural MRI and DTI. Our preliminary study includes eight healthy pediatric subjects with repeated scans at the age of two weeks, one year, and two years with T1, T2, PD, and DT MRI. Analysis is driven by the registration of multiple modalities and time points within and between subjects into a common coordinate frame, followed by image intensity normalization. Quantitative tractography with diffusion and structural image parameters serves for multi-variate tissue analysis. Different patterns of rapid changes were observed in the corpus callosum and the posterior and anterior internal capsule, structures known for distinctly different myelination growth. There are significant differences in central versus peripheral white matter. We demonstrate that the combined longitudinal analysis of structural and diffusion MRI proves superior to individual modalities and might provide a better understanding of the trajectory of early neurodevelopment.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Neda Sadeghi, Marcel Prastawa, John H. Gilmore, Weili Lin, and Guido Gerig "Towards analysis of growth trajectory through multimodal longitudinal MR imaging", Proc. SPIE 7623, Medical Imaging 2010: Image Processing, 76232U (12 March 2010);

Back to Top