You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 April 2010Focus and dose deconvolution technique for improved CD control of immersion clusters
As critical dimension (CD) control requirements increase and process windows decrease, it is now of even higher
importance to be able to determine and separate the sources of CD error in an immersion cluster, in order to correct for
them. It has already been reported that the CD error contributors can be attributed to two primary lithographic
parameters: effective dose and focus. In this paper, we demonstrate a method to extract effective dose and focus, based
on diffraction based optical metrology (scatterometry). A physical model is used to describe the CD variations of a
target with controlled focus and dose offsets. This calibrated model enables the extraction of effective dose and focus
fingerprints across wafer and across scanner exposure field. We will show how to optimize the target design and the
process conditions, in order to achieve an accurate and precise de-convolution over a larger range of focus and dose than
the expected variation of the cluster.
This technique is implemented on an ASML XT:1900Gi scanner interfaced with a Sokudo RF3S track. The systematic
focus and dose fingerprints obtained by this de-convolution technique enable identification of the specific contributions
of the track, scanner and reticle. Finally, specific corrections are applied to compensate for these systematic CD variations and a significant improvement in CD uniformity is demonstrated.
The alert did not successfully save. Please try again later.
Anne-Laure Charley, Koen D'havé, Philippe Leray, David Laidler, Shaunee Cheng, Mircea Dusa, Paul Hinnen, Peter Vanoppen, "Focus and dose deconvolution technique for improved CD control of immersion clusters," Proc. SPIE 7638, Metrology, Inspection, and Process Control for Microlithography XXIV, 763808 (1 April 2010); https://doi.org/10.1117/12.848444