You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
31 March 2010Application of smart BFRP bars with distributed fiber optic sensors into concrete structures
In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart
basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin
scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m
concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the
inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the
bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated
as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by
long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting
process and worked well. From the measured data, the concrete cracks along the pavement length can be easily
monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the
yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing
performance but also mechanical performance in the concrete structures.
The alert did not successfully save. Please try again later.
Yongsheng Tang, Zhishen Wu, Caiqian Yang, Gang Wu, Lihua Zhao, Shiwei Song, "Application of smart BFRP bars with distributed fiber optic sensors into concrete structures," Proc. SPIE 7647, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010, 76471I (31 March 2010); https://doi.org/10.1117/12.847406