Translator Disclaimer
22 October 2010 Viewing angle changeable display
Author Affiliations +
Viewing angle changeable display can change the display viewing angle as needed: In the public place the display could have a narrow viewing angle for privacy, while in the private place the displays could have a wide viewing angle for the convenience of the operation and better viewing experience. This article propose a novel adjustable optical transmission device to realize the viewing angle changes for LCD by using the principle of guest- host effect of liquid crystal. The major technology is to insert a special equipment between the backlight and the LCD, through which the backlight will display either parallel or scattered features to get an either narrow or wide viewing angle. The equipment is an adjustable transmission cell (ATC) which is actually a black G-H LC cell. This ATC is the main focus of our invention. The ATC consists of a polarizer sheet and a special guest-host liquid crystal device filled with the two-phase dye (called as GH-LC in this report), to achieve the viewing angle change in the LCD. When an electrical field charges to the ATC, only the so-called near-axis lights can pass through the ATC within a relatively small angle, while the other scattered lights are absorbed sequentially by GH-LC and the polarizer sheet. On the other hand, when there is no electrical charge to the ATC, the cell behaves like a normal polarizer; and the scattered light can pass through the cell and polarizer in a normal way. This paper describes the principle and structure of the device, applies the electric field on the sample to observe the electro-optical properties, combine the theoretical and experimental research, getting the viewing angle effects of the display.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jinbi Leng, Ziqiang Huang, Wenjun Yang, and Xiaoxi Chen "Viewing angle changeable display", Proc. SPIE 7658, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Detector, Imager, Display, and Energy Conversion Technology, 765816 (22 October 2010);

Back to Top