Contents

ix Conference Committee

3D IMAGING I

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7684 02</td>
<td>3D imaging laser radar using Geiger-mode APDs: analysis and experiments</td>
<td>Y. Guo, G. Huang, R. Shu, Shanghai Institute of Technical Physics (China)</td>
</tr>
<tr>
<td>7684 03</td>
<td>Active 3D camera design for target capture on Mars orbit</td>
<td>P. Cotin, F. Babin, D. Cantin, INO (Canada); A. Deslauriers, B. Sylvestre, Neptec Design Group Ltd. (Canada)</td>
</tr>
<tr>
<td>7684 04</td>
<td>Improved performance ladar receiver</td>
<td>B. Dion, N. Bélanger, J. Lauzon, P. Lepage, M. Tremblay, Esterline-CMC Electronics Inc. (Canada)</td>
</tr>
<tr>
<td>7684 05</td>
<td>Compact 3D flash lidar video cameras and applications</td>
<td>R. Stettner, Advanced Scientific Concepts, Inc. (United States)</td>
</tr>
<tr>
<td>7684 06</td>
<td>3D range-gated imaging in scattering environments</td>
<td>M. Laurenzis, F. Christnacher, D. Monnin, Institut Franco-Allemand de Recherches de Saint-Louis (France); I. Zieleski, Wehrtechnische Dienststelle für Waffen und Munition (Germany)</td>
</tr>
<tr>
<td>7684 07</td>
<td>3D-LZ helicopter ladar imaging system</td>
<td>J. Savage, W. Harrington, R. A. McKinley, Air Force Research Lab. (United States); H. N. Burns, H.N. Burns Engineering Corp. (United States); S. Braddom, Z. Szoboszlay, Army Aeroflightdynamics Directorate (United States)</td>
</tr>
<tr>
<td>7684 08</td>
<td>Terrain classification of ladar data over Haitian urban environments using a lower envelope follower and adaptive gradient operator</td>
<td>A. L. Neuenschwander, The Univ. of Texas at Austin (United States); M. M. Crawford, Purdue Univ. (United States); L. A. Magruder, The Univ. of Texas at Austin (United States); C. A. Weed, MIT Lincoln Lab. (United States); R. Cannata, Harris Corp. (United States); D. Fried, R. Knowlton, R. Heinrichs, MIT Lincoln Lab. (United States)</td>
</tr>
<tr>
<td>7684 09</td>
<td>Spectral ladar: towards active 3D multispectral imaging</td>
<td>M. A. Powers, General Dynamics Corp. (United States) and Univ. of Maryland, College Park (United States); C. C. Davis, Univ. of Maryland, College Park (United States)</td>
</tr>
</tbody>
</table>
3D IMAGING II

7684 0B The dawn of optical radar: a story from another side of the globe (Invited Paper) [7684-11]
V. Molebny, National Taras Shevchenko Univ. of Kyiv (Ukraine); P. Zarubin, State Unitary Enterprise V.K. Orlov Granat Development Bureau (Russian Federation); G. Kamerman, FastMetrix, Inc. (United States)

7684 0C 32 × 32 Geiger-mode lidar camera [7684-12]
P. Yuan, R. Sudharsanan, X. Bai, J. Boisvert, P. McDonald, E. Labios, Spectrolab, Inc. (United States); M. S. Salisbury, G. M. Stuart, H. Danny, A. A. Portillo, A. B. Roybal, Boeing-SVS, Inc. (United States); S. Van Duyne, G. Pauls, S. Gaalema, Black Forest Engineering, LLC (United States)

7684 0D Intensified imaging photon-counting technology for enhanced flash lidar performance [7684-13]
C. J. Grund, A. Harwit, Ball Aerospace & Technologies Corp. (United States)

7684 0E Foliage penetration obscuration probability density function analysis from overhead canopy photos for gimbaled linear-mode and Geiger-mode airborne lidar [7684-14]
R. R. Burton, FastMetrix, Inc. (United States)

7684 0F Calibration targets and standards for 3D lidar systems [7684-08]
B. H. Miles, G. W. Kamerman, D. K. Fronek, P. Eadon, FastMetrix, Inc. (United States)

ENVIRONMENTAL MONITORING

7684 0I Atmospheric aerosol characterization using multiwavelength multistatic light scattering [7684-17]
A. M. Wyant, The Pennsylvania State Univ. (United States); M. G. Snyder, North Carolina State Univ. (United States); L. Brouwer, Alion Science and Technology (United States); C. R. Philbrick, The Pennsylvania State Univ. (United States) and North Carolina State Univ. (United States)

7684 0J Optical remote sensing techniques characterize the properties of atmospheric aerosols [7684-18]
R. Philbrick, North Carolina State Univ. (United States) and The Pennsylvania State Univ. (United States); H. Hallen, North Carolina State Univ. (United States); A. Wyant, The Pennsylvania State Univ. (United States); T. Wright, M. Snyder, North Carolina State Univ. (United States)

7684 0K Lidar, TEOM, and sunphotometer measured and model reconstructed atmospheric parameters [7684-19]
D. V. Vladutescu, The City College of The City Univ. of New York (United States) and New York City College of Technology (United States); B. Gross, Y. Wu, F. Moshary, S. Ahmed, New York City College of Technology (United States)

7684 0L Standoff detection of explosives in open environment using enhanced photodissociation fluorescence [7684-20]
T. Arusi-Parpar, S. Fastig, J. Shapira, B. Shwartzman, D. Rubin, Y. Ben-Hamo, A. Englander, Soreq Nuclear Research Ctr. (Israel)
DATA PROCESSING AND ALGORITHMS

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7684-22</td>
<td>The application of iterative closest point (ICP) registration to improve 3D terrain mapping estimates using the flash 3D ladar system</td>
<td>J. Woods, E. E. Armstrong, Air Force Research Lab. (United States); W. Armbruster, FGAN-FOM (Germany); R. Richmond, ITT Information Systems (United States)</td>
<td></td>
</tr>
<tr>
<td>7684-23</td>
<td>Computational experiments on super-resolution enhancement of flash lidar data</td>
<td>A. Bulyshev, Analytical Mechanics Associates, Inc. (United States); G. Hines, M. Vanek, F. Amzajerdian, R. Reisee, NASA Langley Research Ctr. (United States); D. Pierrottet, Coherent Applications, Inc. (United States)</td>
<td></td>
</tr>
<tr>
<td>7684-24</td>
<td>Redundancy analysis of raw Geiger-mode laser radar data</td>
<td>N. A. Lopez, G. W. Kamerman, FastMetrix, Inc. (United States)</td>
<td></td>
</tr>
<tr>
<td>7684-25</td>
<td>Scene-based algorithm for range/intensity estimation correction for the flash 3D ladar system</td>
<td>S. Jordan, Air Force Research Lab. (United States); E. Armstrong, OptiMetrics, Inc. (United States); H. Larsson, Swedish Defence Research Agency (Sweden); M. Gebhardt, Air Force Research Lab. (United States); O. Steinvall, Swedish Defence Research Agency (Sweden)</td>
<td></td>
</tr>
<tr>
<td>7684-26</td>
<td>Signal processing on waveform data from the Eyesafe Ladar Testbed (ELT)</td>
<td>K. D. Neilsen, S. E. Budge, R. T. Pack, Utah State Univ. (United States)</td>
<td></td>
</tr>
<tr>
<td>7684-27</td>
<td>Automated in-track and cross-track airborne flash ladar image registration for wide-area mapping</td>
<td>C. M. Wong, J. E. Logan, C. Bracikowski, B. K. Baldauf, Northrop Grumman Aerospace Systems (United States)</td>
<td></td>
</tr>
</tbody>
</table>

COHERENT SYSTEMS

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7684-65</td>
<td>A history of laser radar in the United States (Invited Paper)</td>
<td>P. F. McManamon, Univ. of Dayton (United States); G. Kamerman, FastMetrix, Inc. (United States); M. Huffaker, Coherent Investments (United States)</td>
<td></td>
</tr>
<tr>
<td>7684-29</td>
<td>Coherent high-resolution sparse aperture imaging testbed</td>
<td>I. Anisimov, N. J. Miller, D. Shemano, P. F. McManamon, Ladar and Optical Communications Institute (United States); J. W. Haus, Univ. of Dayton (United States)</td>
<td></td>
</tr>
<tr>
<td>7684-30</td>
<td>Compact diode laser homodyne vibrometers</td>
<td>C. J. Grund, LightWorks, LLC (United States); H. Guenther, J. Connolly, Innovative Photonic Solutions (United States)</td>
<td></td>
</tr>
<tr>
<td>7684-31</td>
<td>Coherent integration efficiency, diversity, and detectivity of temporally integrated random coherent ladar signals</td>
<td>P. Gatt, D. Jacob, Lockheed Martin Coherent Technologies (United States)</td>
<td></td>
</tr>
<tr>
<td>Paper ID</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>7684 0X</td>
<td>Feature extraction using voxel aggregation of focused discrete lidar data</td>
<td>S. Hagstrom, D. Messinger, S. Brown, Rochester Institute of Technology (United States)</td>
<td></td>
</tr>
<tr>
<td>7684 0Y</td>
<td>Three-dimensional transformation for automatic target recognition using lidar data</td>
<td>R. D. Nieves, W. D. Reynolds, Jr., ITT Corp. (United States)</td>
<td></td>
</tr>
<tr>
<td>7684 0Z</td>
<td>Laser gated viewing: An enabler for automatic target recognition?</td>
<td>E. Bovenkamp, TNO Science and Industry (Netherlands); K. Schutte, TNO Defence, Security and Safety (Netherlands)</td>
<td></td>
</tr>
<tr>
<td>7684 10</td>
<td>Obstruction detection comparison of small-footprint full-waveform and discrete return lidar</td>
<td>L. A. Magruder, A. L. Neuenschwander, S. P. Marmillion, The Univ. of Texas at Austin (United States); S. A. Tweddale, Army Corps of Engineers (United States)</td>
<td></td>
</tr>
<tr>
<td>7684 11</td>
<td>Simulating full-waveform LiDAR</td>
<td>A. M. Kim, R. C. Olsen, C. F. Borges, Naval Postgraduate School (United States)</td>
<td></td>
</tr>
<tr>
<td>7684 12</td>
<td>Receiver-operating characteristic for several multiple hypothesis range-rate filter algorithms</td>
<td>D. G. Youmans, SPARTA, Inc. (United States)</td>
<td></td>
</tr>
<tr>
<td>7684 15</td>
<td>Physical modeling of 3D and 4D laser imaging</td>
<td>G. Anna, D. Hamoir, L. Hespel, F. Lafay, N. Rivière, B. Tanguy, ONERA (France)</td>
<td></td>
</tr>
<tr>
<td>7684 16</td>
<td>Calibration of a seafloor microtopography laser high-definition profiler</td>
<td>N. P. Chotiros, K. R. Loeffler, T.-A. N. Nguyen, The Univ. of Texas at Austin (United States)</td>
<td></td>
</tr>
<tr>
<td>7684 17</td>
<td>Laser imaging of small surface vessels and people at sea</td>
<td>O. Steinvall, M. Elmqvist, K. Karlsson, H. Larsson, M. Axelsson, Swedish Defence Research Agency (Sweden)</td>
<td></td>
</tr>
<tr>
<td>7684 18</td>
<td>Flight test and simulation results of an integrated dual airborne laser scanner (DALS)/INS navigator</td>
<td>A. Vadlamani, M. Uijt de Haag, Ohio Univ. (United States)</td>
<td></td>
</tr>
</tbody>
</table>
From long range to high precision: pushing the limits of pulsed-time-of-flight measurement [7684-46]
M. Pfennigbauer, RIEGL Laser Measurement Systems GmbH (Austria); B. Möbius, Jena-Optronik GmbH (Germany); A. Ullrich, RIEGL Laser Measurement Systems GmbH (Austria); J. Pereira do Carmo, European Space Agency (Netherlands)

A novel NLFM waveform generator using tunable integrated optical ring resonators: simulation and proof of concept experiment [7684-48]
D. B. Adams, W. T. Snider, C. K. Madsen, Texas A&M Univ. (United States)

High-power high-rep-rate SLM lasers [7684-49]
J. Kilmer, G. Ross, Y. Yin, Photonics Industries International, Inc. (United States)

Special modulated beams for cylindrical coordinates in anisotropic media using computer algebra [7684-51]
S. Echeverri Chacón, Univ. EAFIT (Colombia)

MEMS-scanned ladar sensor for small ground robots [7684-52]
B. L. Stann, J. F. Dammann, M. M. Giza, Army Research Lab. (United States); P.-S. Jian, Aerotek Inc. (United States); W. B. Lawler, H. M. Nguyen, L. C. Sadler, Army Research Lab. (United States)

ADVANCED SYSTEMS AND COMPONENTS II

Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement [7684-53]
M. Pfennigbauer, A. Ullrich, RIEGL Laser Measurement Systems GmbH (Austria)

Fusing waveform lidar and hyperspectral data for species-level structural assessment in savanna ecosystems [7684-55]
D. Sarrazin, J. van Aardt, Rochester Institute of Technology (United States); G. P. Asner, Carnegie Institution for Science (United States); J. McGlinchy, D. W. Messinger, J. Wu, Rochester Institute of Technology (United States)

An improvement on accuracy of laser radar using a Geiger-mode avalanche photodiode by time-of-flight analysis with Poisson statistics [7684-56]
M. S. Oh, H. J. Kong, KAIST (Korea, Republic of)

Extended-range digital holographic imaging [7684-64]

POSTER SESSION

Statistical comparison between Hysplit sounding and lidar observation of planetary boundary layer characteristics over New York City [7684-57]
C. M. Gan, The City College of New York (United States) and The Graduate Center (United States); Y. Wu, B. Gross, F. Moshary, The City College of New York (United States)
Atmospheric cross-wind and turbulence measurements using turbulence-induced scintillations [7684-58]

Remote qualitative profiling of the cross-wind flow with lidar [7684-59]
G. Machavariani, J. Shapira, U. Talmud, O. Porat, S. Fastig, Soreq Nuclear Research Ctr. (Israel)

Multispectral lidar system: design, build, and test [7684-61]
S. Fastig, Y. Ehrlich, S. Pearl, E. Naor, Y. Kraus, T. Inbar, D. Katz, Soreq Nuclear Research Ctr. (Israel)

Author Index
Conference Committee

Symposium Chair

Michael T. Elsmann, Air Force Research Laboratory (United States)

Symposium Cochair

William Jeffrey, HRL Laboratories, LLC (United States)

Conference Chairs

Monte D. Turner, Defense Advanced Research Projects Agency (United States)
Gary W. Kamerman, FastMetrix, Inc. (United States)

Program Committee

Phillip Gatt, Lockheed Martin Coherent Technologies (United States)
James C. Lamoreux, NASA Johnson Space Center (United States)
Vasyl V. Molebny, National Taras Shevchenko University of Kyiv (Ukraine)
C. Russell Philbrick, The Pennsylvania State University (United States)
Upendra N. Singh, NASA Langley Research Center (United States)
Ove Steinvall, Swedish Defence Research Agency (Sweden)

Session Chairs

1 Introduction to CZMIL: A Multisensor Airborne Mapping System: Joint Session with Conference 7695
 Paul E. Lewis, National Geospatial-Intelligence Agency (United States)
 Monte D. Turner, Defense Advanced Research Projects Agency (United States)

2 CZMIL Hardware: Joint Session with Conference 7695
 Grady H. Tuell, Optech International, Inc. (United States)

3 CZMIL Algorithms and Software: Joint Session with Conference 7695
 Grady H. Tuell, Optech International, Inc. (United States)

4 3D Imaging I
 Monte D. Turner, Defense Advanced Research Projects Agency (United States)
5 3D Imaging II
Monte D. Turner, Defense Advanced Research Projects Agency (United States)

6 Environmental Monitoring
Gary W. Kamerman, FastMetrix, Inc. (United States)

7 Data Processing and Algorithms
Phillip Gatt, Lockheed Martin Coherent Technologies (United States)

8 Coherent Systems
Ove Steinvall, Swedish Defence Research Agency (Sweden)

9 Automatic Target Recognition Lidar
C. Russell Philbrick, The Pennsylvania State University (United States)

10 Simulation and Modeling
Norman A. Lopez, FastMetrix, Inc. (United States)

11 Marine and Maritime Systems
Kevin R. Slocum, National Geospatial-Intelligence Agency (United States)

12 Advanced Systems and Components I
Vasyl V. Molebny, National Taras Shevchenko University of Kyiv (Ukraine)

13 Advanced Systems and Components II
Vasyl V. Molebny, National Taras Shevchenko University of Kyiv (Ukraine)