You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
This paper introduces a concept towards integrating manned and Unmanned Aircraft Systems (UASs) into a highly
functional team though the design and implementation of 3-D distributed formation/flight control algorithms with the
goal to act as wingmen for a manned aircraft. This method is designed to minimize user input for team control,
dynamically modify formations as required, utilize standard operating formations to reduce pilot resistance to
integration, and support splinter groups for surveillance and/or as safeguards between potential threats and manned
vehicles. The proposed work coordinates UAS members by utilizing artificial potential functions whose values are
based on the state of the unmanned and manned assets including the desired formation, obstacles, task assignments, and
perceived intentions. The overall unmanned team geometry is controlled using weighted potential fields. Individual
UAS utilize fuzzy logic controllers for stability and navigation as well as a fuzzy reasoning engine for flight path
intention prediction. Approaches are demonstrated in simulation using the commercial simulator X-Plane and
controllers designed in Matlab/Simulink. Experiments include trail and right echelon formations as well as splinter group
surveillance.
The alert did not successfully save. Please try again later.
Richard Garcia, Laura Barnes, MaryAnne Fields, "Unmanned aircraft systems as wingmen," Proc. SPIE 7692, Unmanned Systems Technology XII, 76920T (7 May 2010); https://doi.org/10.1117/12.849806