Translator Disclaimer
18 May 2010 Assessing structural characteristics of axons in cortical neurons using polarization sensitive SHG
Author Affiliations +
Polarization sensitive second harmonic generation (PSHG) imaging can provide useful information which is unreachable by intensity SHG imaging. Specifically, it can provide geometrical characteristics of the SHG source molecular architecture. The information is obtained by rotating the excitation linear polarization and by fitting the SHG intensity variation to a cylindrical symmetry biophysical model. As a result, the ratios of the non-vanishing χ2 tensor elements, responsible for the SHG conversion, are retrieved. In the end, by assuming a SHG source with dominant hyperpolarizability, its molecular orientation can be estimated. Here, we developed and used this approach to retrieve submicron structural information from cultured neurons and to provide estimation on the effective orientation of the molecular SHG source in axons. For that purpose, the PSHG images of axons were fitted pixel by pixel using an algorithm based on the above mentioned model. A coefficient of determination of r2>90% was chosen as a filtering mechanism. For a selected region of interest we then retrieved the pixels' values histogram of the harmonophores' effective orientations, θe. The distribution was centred at θe=34.93°, with σ=7.62°. These angle values correspond to the geometrical characteristics of the tubulin heterodimmers forming the microtubules. Modifications on tubulin dimers may alter θe, σ thus the PSHG optical technique suggests novel quantitative biomarkers able to characterize neurons' plasticity as well as disease progression.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sotiris Psilodimitrakopoulos, Valerie Petegnief, Guadalupe Soria, Nuria de Vera, Ivan Amat-Roldan, David Artigas, Anna M. Planas, and Pablo Loza-Alvarez "Assessing structural characteristics of axons in cortical neurons using polarization sensitive SHG", Proc. SPIE 7715, Biophotonics: Photonic Solutions for Better Health Care II, 77152A (18 May 2010);

Back to Top