5 August 2010 Gaia: 1,000 million stars with 100 CCD detectors
Author Affiliations +
Abstract
Gaia is the next space-astrometry mission of the European Space Agency, following up on the success of the Hipparcos mission. With a focal plane containing more than 100 large-area CCD detectors, Gaia will survey the sky and repeatedly observe the brightest 1,000 million (one billion) objects, down to 20th magnitude, during its 5-year nominal lifetime. Gaia's science data will comprise absolute astrometry, broad-band photometry, and low-resolution spectro-photometry. Medium-resolution spectroscopic data (resolving power 11,500) will be obtained for the brightest 150 million sources, down to 17th magnitude. The extreme thermo-mechanical stability of the spacecraft, combined with the selection of the L2 Lissajous point of the Sun-Earth/Moon system for operations, allows stellar parallaxes (distances) to be measured with standard errors less than 10 micro-arcsecond (μas) for stars brighter than 13th magnitude, 20-30 μas for stars at 15th magnitude, and around 300 μas at magnitude 20. Photometric standard errors are in the milli-magnitude regime. The spectroscopic data will allow the measurement of radial velocities with errors at the level of 15 km s-1 at magnitude 17. Gaia's primary science goal is to unravel the kinematical, dynamical, and chemical structure and evolution of the Milky Way. In addition, Gaia's data will touch many other areas of research, for instance stellar physics, solar-system bodies, fundamental physics, and exo-planets. The Gaia spacecraft is currently undergoing its critical design review (CDR). With a launch foreseen in the second half of 2012, the final catalogue is expected in 2020. The science community in Europe, organized in the Gaia Data Processing and Analysis Consortium (DPAC), is responsible for the processing of the Gaia data. This formidable task is in full preparation. The calibration of the data presents exciting challenges, in particular in the area of radiation-damage-induced charge-transfer inefficiency (CTI).
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jos de Bruijne, Jos de Bruijne, Ralf Kohley, Ralf Kohley, Timo Prusti, Timo Prusti, } "Gaia: 1,000 million stars with 100 CCD detectors", Proc. SPIE 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave, 77311C (5 August 2010); doi: 10.1117/12.862062; https://doi.org/10.1117/12.862062
PROCEEDINGS
15 PAGES


SHARE
RELATED CONTENT

Design of a spaceborne astrometric survey instrument
Proceedings of SPIE (August 27 1998)
Breadboard phase of the XMM optical monitor
Proceedings of SPIE (May 31 1994)
The 4m international liquid mirror telescope (ILMT)
Proceedings of SPIE (June 26 2006)
Explorer-class astrobiology mission
Proceedings of SPIE (July 27 2000)
DUNE: the Dark Universe Explorer
Proceedings of SPIE (June 13 2006)

Back to Top