PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 7735, including the Title Page, Copyright information, Table of Contents, Introduction, and the Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper we describe both recently completed instrumentation projects and our current development efforts in the
context of the Observatory's science driven strategic plan which seeks to address key questions in observational
astronomy for extra-galactic, Galactic, and planetary science with both seeing limited capabilities and high angular
resolution adaptive optics capabilities. This paper will review recently completed projects as well as new instruments in
development including MOSFIRE, a near IR multi-object spectrograph nearing completion, a new seeing limited
integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager, and the Keck Next
Generation Adaptive Optics facility and its first light science instrument DAVINCI.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The first-generation instrument development programme for the VLT/I has now come to a close. The delivered
instruments which have served the astronomical community since first light at Paranal in 1998, have provided
astronomers with general purpose capabilities covering the available wavelength range from the UV to mid infrared. The
second-generation programme has now begun with delivery of X-shooter, and a further six new instruments (SPHERE,
MUSE, KMOS, ESPRESSO, GRAVITY, MATISSE) are under construction, marking a transition to more specialised
scientific capabilities designed for a more limited but very ambitious set of science goals. In addition, instrumentation at
La Silla telescopes continues to be effective in producing scientific results, especially through the planet-finder HARPS
on the 3.6m. Future plans should see a transfer of resources to E-ELT instrument construction while new instrument
development for the VLT will continue, but at a slower pace.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Developing new instruments and upgrading existing instruments has been an important aspect of Subaru telescope's
operation. Seven facility instruments and two visiting instruments are currently under use. Among them
HiCIAO, a coronagraphic imager combined with adaptive optics (AO188), has started its full operation in the 2nd
semester of 2009. We are using HiCIAO for a large program (SEEDS) to find new exo-planets and comprehend
planet formation from proto-planetary disks. To achieve higher contrast, a new coronagraph attachment with an
extreme AO (SCExAO) will be installed as a PI instrument. AO188 is also used with the IRCS in natural guide
star mode. Its laser guide star mode is currently commissioning. The Fibre multi-object spectrograph (FMOS),
which is comprised of 400 fibers placed at the prime focus and delivers 0.9-1.8um spectra, will be partly offered
to open use from mid 2010. Hyper Suprime-Cam, the wide-field upgrade (1.5 deg FoV) of the Suprime-Cam, is
under development for its first light in 2011. Development of an immersion grating has taken place for upgrading
the IRCS with a high-resolution infrared spectrograph.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The tenth anniversary of Gemini Observatory operation provides a convenient reference point to reflect on the past,
present, and future of the instrumentation program. The Observatory will soon meet a significant milestone: the last
batch of instruments from the first three generations of instrumentation development will be commissioned by the end of
2011. This will represent a revolution for Gemini-South, which will have a suite of new or upgraded, state of the art
instruments. Included in this suite will be extreme and multi-conjugate adaptive optics systems, new infrared imagers
and multi-object spectrographs, and state of the art CCD detectors. The Observatory is on the cusp of a new era with the
fourth generation of instrumentation. While the past represented building a whole new observatory, the future represents
renewal and reinvestment, with plans for a new high-resolution optical spectrograph, new acquisition and guide units,
upgraded and refurbished instruments, and improved methods for developing Gemini instrumentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
An overview of instrumentation for the Large Binocular Telescope is presented. Optical instrumentation includes
the Large Binocular Camera (LBC), a pair of wide-field (27 × 27) mosaic CCD imagers at the prime focus, and
the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs
mounted at the straight-through F/15 Gregorian focus incorporating multiple slit masks for multi-object spectroscopy
over a 6 field and spectral resolutions of up to 8000. Infrared instrumentation includes the LBT Near-IR
Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCIFER), a modular
near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at a bent interior focal station and designed
for seeing-limited (FOV: 4 × 4) imaging, long-slit spectroscopy, and multi-object spectroscopy utilizing cooled
slit masks and diffraction limited (FOV: 0.5 × 0.5) imaging and long-slit spectroscopy. Strategic instruments
under development for the remaining two combined focal stations include an interferometric cryogenic beam combiner
with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI)
and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular
resolution and sensitivity (LINC-NIRVANA). In addition, a fiber-fed bench spectrograph (PEPSI) capable of
ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal
investigator instrument. The availability of all these instruments mounted simultaneously on the LBT permits
unique science, flexible scheduling, and improved operational support. Over the past two years the LBC and the
first LUCIFER instrument have been brought into routine scientific operation and MODS1 commissioning is set
to begin in the fall of 2010.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In the ten years since the converted 6.5m MMT was dedicated the observatory has built up an impressive
suite of instrumentation to compliment the three interchangeable secondary mirrors. This review paper
presents an up-to-date perspective on all the capabilities of our full range of instrumentation, highlighting
newly commissioned instruments (the MMT and Magellan InfraRed Spectrograph (MMIRS), an infrared
spectrograph) and new modes or upgrades for established instruments (such as; Red Channel, the MMT's
workhorse spectrograph, Hectochelle, an optical fiber-fed, multi-object spectrograph and the AO
instruments CLIO, a 5 micron camera and BLINC, a mid-infrared camera). The MMT's pioneering
adaptive secondary mirror can be used with both natural guide stars (NGS) or with a Rayleigh laser guide
star (LGS) system. The LGS has recently demonstrated wide-field partial compensation with ground layer
adaptive optics and here we present progress to date. Finally, we report on the start of a project to
investigate how the instrument suite has contributed to the science productivity the MMT over the last 10
years.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Summary: The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field
spectrograph currently in manufacturing, assembly and integration phase. MUSE has a field of 1x1 arcmin2 sampled at
0.2x0.2 arcsec2 and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The
instrument is a large assembly of 24 identical high performance integral field units, each one composed of an advanced
image slicer, a spectrograph and a 4kx4k detector. In this paper we review the progress of the manufacturing and report
the performance achieved with the first integral field unit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The AAO is building an optical high resolution multi-object spectrograph for the AAT for Galactic Archaeology. The
instrument has undergone significant design revision over that presented at the 2008 Marseilles SPIE meeting. The
current design is a 4-channel VPH-grating based spectrograph providing a nominal spectral resolving power of 28,000
and a high-resolution mode of 45,000 with the use of a slit mask. The total spectral coverage is about 1000 Angstroms
for up to 392 simultaneous targets within the 2 degree field of view. Major challenges in the design include the
mechanical stability, grating and dichroic efficiencies, and fibre slit relay implementation. An overview of the current
design and discussion of these challenges is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Multi-Object Double Spectrographs (MODS) are two identical high-throughput optical low- to medium-resolution
CCD spectrometers being deployed at the Large Binocular Telescope (LBT). Operating in the 340-1000nm range, they
use a large dichroic to split light into separately-optimized red and blue channels that feature reflective collimators and
decentered Maksutov-Schmidt cameras with monolithic 8×3K CCD detectors. A parallel infrared laser closed-loop
image motion compensation system nulls spectrograph flexure giving it high calibration stability. The two MODS
instruments may be operated together with digital data combination as a single instrument giving the LBT an effective
aperture of 11.8-meter, or separately configured to flexibly use the twin 8.4-meter apertures. This paper describes the
properties and performance of the completed MODS1 instrument. MODS1 was delivered to LBT in May 2010 and is
being prepared for first-light in September 2010.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We describe the concept of a new instrument for the Canada-France-Hawaii telescope (CFHT), SITELLE (Spectromètre
Imageur à Transformée de Fourier pour l'Etude en Long et en Large de raies d'Emission), as well as a science case and
a technical study of its preliminary design. SITELLE will be an imaging Fourier transform spectrometer capable of
obtaining the visible (350 nm - 950 nm) spectrum of every source of light in a field of view of 15 arcminutes, with 100%
spatial coverage and a spectral resolution ranging from R = 1 (deep panchromatic image) to R = 104 (for gas dynamics).
SITELLE will cover a field of view 100 to 1000 times larger than traditional integral field spectrographs, such as
GMOS-IFU on Gemini or the future MUSE on the VLT. It is a legacy from BEAR, the first imaging FTS installed on
the CFHT and the direct successor of SpIOMM, a similar instrument attached to the 1.6-m telescope of the Observatoire
du Mont-Mégantic in Québec. SITELLE will be used to study the structure and kinematics of HII regions and ejecta
around evolved stars in the Milky Way, emission-line stars in clusters, abundances in nearby gas-rich galaxies, and the
star formation rate in distant galaxies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The 16 low resolution spectrographs (LRS) have been successfully commissioned for the LAMOST. The LRS design
employs a dual-beamed and bench-mounted, with large-beamed, fast Schmidt cameras and Volume Phase Holographic
(VPH) transmission gratings. The design wavelength range is 370-900nm, at resolutions of R=1000and R=10000. Each
spectrograph is fed by 250 fibers with 320 micron in diameter (corresponding 3.3 arcsec), composed of one F/4 Schmidt
collimator, a dichroic beam-splitter, four VPH gratings, articulating Schmidt cameras that are optimized at blue band
(370-590 nm) and red band (570-900 nm), and field lens near the focal plane service as the vacuum window of CCD
detector cryogenic head. In this paper, we present the testing result of the LRS on the image quality, spectra resolution,
efficiency and observing spectra.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Dark Energy Survey Collaboration is building the Dark Energy Camera (DECam), a 3 square degree, 520
Megapixel CCD camera which will be mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to
perform the 5000 sq. deg. Dark Energy Survey with 30% of the telescope time over a 5 year period. During the
remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of
DECam is well underway. Integration and testing of the major system components has already begun at Fermilab and
the collaborating institutions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present the scientific motivations for GYES: a high multiplex (of the order of several hundred), high resolution
(about 20 000), spectrograph to be placed at the prime focus of the CFHT. The main purpose of such an
instrument is to conduct a spectroscopic survey complementary to the Gaia mission. The final Gaia catalogue
(expected around 2020) will provide accurate distances, proper motions and spectrophotometry for all the stars
down to a magnitude of 20. The spectroscopic instrument on board the Gaia satellite will provide intermediate
resolution (R=11 500) spectra for stars down to the 17th magnitude. For the fainter stars there will be no radial
velocity information. For all the stars the chemical information will be limited to a few species. A multifibre
spectrograph at the prime focus of the CFHT will be able to provide the high resolution spectra for stars fainter
than 13th magnitude, needed to obtain both accurate radial velocities and detailed chemical abundances. The possible use of GYES will not be limited to Gaia complementary surveys and we here describe the potentialities
of such an instrument. We describe here how the scientific drivers are translated into technical requirements.
The results of our on-going feasibility study are described in an accompanying poster.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
ESPRESSO, the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations, will combine the
efficiency of modern echelle spectrograph design with extreme radial-velocity precision. It will be installed on ESO's
VLT in order to achieve a gain of two magnitudes with respect to its predecessor HARPS, and the instrumental radialvelocity
precision will be improved to reach cm/s level. Thanks to its characteristics and the ability of combining
incoherently the light of 4 large telescopes, ESPRESSO will offer new possibilities in various fields of astronomy. The
main scientific objectives will be the search and characterization of rocky exoplanets in the habitable zone of quiet, nearby
G to M-dwarfs, and the analysis of the variability of fundamental physical constants. We will present the ambitious
scientific objectives, the capabilities of ESPRESSO, and the technical solutions of this challenging project.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The One Degree Imager will be the future flagship instrument at the WIYN 3.5m observatory, once commissioned in
2011. With a 1 Gigapixel focal plane of Orthogonal Transfer Array CCD devices, ODI will be the most advanced optical
imager with open community access in the Northern Hemisphere. In this talk we will summarize the progress since the
last presentation of ODI at the SPIE 2008 meeting, focusing on optics procurement, instrument assembly and testing, and
detector operations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We report design, performance and early results from two of the Extremely High Precision Extrasolar
Planet Tracker Instruments (EXPERT) as part of a global network for hunting for low mass planets in the
next decade. EXPERT is a combination of a thermally compensated monolithic Michelson interferometer
and a cross-dispersed echelle spectrograph for extremely high precision Doppler measurements for nearby
bright stars (e.g., 1m/s for a V=8 solar type star in 15 min exposure). It has R=18,000 with a 72 micron
slit and a simultaneous coverage of 390-694 nm. The commissioning results show that the instrument has
already produced a Doppler precision of about 1 m/s for a solar type star with S/N~100 per pixel. The
instrument has reached ~4 mK (P-V) temperature stability, ~1 mpsi pressure stability over a week and a
total instrument throughput of ~30% at 550 nm from the fiber input to the detector. EXPERT also has a
direct cross-dispersed echelle spectroscopy mode fed with 50 micron fibers. It has spectral resolution of
R=27,000 and a simultaneous wavelength coverage of 390-1000 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The 'Imaka project is a high-resolution wide-field imager proposed for the Canada-France-Hawaii telescope
(CFHT) on Mauna Kea. 'Imaka takes advantage of two features of the optical turbulence above Mauna Kea:
weak optical turbulence in the free-atmosphere and boundary layer turbulence which is highly confined within a
surface layer tens of meters thick and or the telescope enclosures. The combination of the two allows a groundlayer
adaptive optics system (GLAO) to routinely deliver an extremely-wide corrected field of view of one-degree
at an excellent free-atmosphere seeing limit at visible wavelengths. In addition, populating the focal-plane with
orthogonal-transfer CCDs provides a second level of image improvement on the free-atmosphere seeing and the
residual GLAO correction. The impact of such an instrument covers a broad range of science and is a natural
progression of CFHT's wide-field expertise.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Large Synoptic Survey Telescope (LSST) is a large aperture, wide-field facility designed to provide deep images of
half the sky every few nights. There is only a single instrument on the telescope, a 9.6 square degree visible-band
camera, which is mounted close to the secondary mirror, and points down toward the tertiary. The requirements of the
LSST camera present substantial technical design challenges. To cover the entire 0.35 to 1 μm visible band, the camera
incorporates an array of 189 over-depleted bulk silicon CCDs with 10 μm pixels. The CCDs are assembled into 3 x 3
"rafts", which are then mounted to a silicon carbide grid to achieve a total focal plane flatness of 15 μm p-v. The CCDs
have 16 amplifiers per chip, enabling the entire 3.2 Gigapixel image to be read out in 2 seconds. Unlike previous
astronomical cameras, a vast majority of the focal plane electronics are housed in the cryostat, which uses a mixed
refrigerant Joule-Thompson system to maintain a -100ºC sensor temperature. The shutter mechanism uses a 3 blade
stack design and a hall-effect sensor to achieve high resolution and uniformity. There are 5 filters stored in a carousel
around the cryostat and the auto changer requires a dual guide system to control its position due to severe space
constraints. This paper presents an overview of the current state of the camera design and development plan.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
ESPRESSO, a very high-resolution, high-efficiency, ultra-high stability, fiber-fed, cross-dispersed echelle spectrograph
located in the Combined-Coudé focus of the VLT, has been designed to detect exo-planets with unprecedented radial
velocity accuracies of 10 cm/sec over 20 years period. To increase spectral resolution, an innovative pupil slicing
technique has been adopted, based onto free-form optics. Anamorphism has been added to increase resolution while
keeping the physical size of the echelle grating within reasonable limits. Anamorphic VPH grisms will help to decrease
detector size, while maximizing efficiency and inter-order separation. Here we present a summary of the optical design
of the spectrograph and of expected performances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Visible Integral-field Replicable Unit Spectrograph (VIRUS) consists of a baseline build of 150 identical
spectrographs (arrayed as 75 units, each with a pair of spectrographs) fed by 33,600 fibers, each 1.5 arcsec diameter,
deployed over the 22 arcminute field of the upgraded 10 m Hobby-Eberly Telescope (HET). The goal is to deploy 96
units. VIRUS has a fixed bandpass of 350-550 nm and resolving power R~700. VIRUS is the first example of
industrial-scale replication applied to optical astronomy and is capable of spectral surveys of large areas of sky. The
method of industrial replication, in which a relatively simple, inexpensive, unit spectrograph is copied in large numbers,
offers significant savings of engineering effort, cost, and schedule when compared to traditional instruments.
The main motivator for VIRUS is to map the evolution of dark energy for the Hobby-Eberly Telescope Dark Energy
Experiment (HETDEX+) using 0.8M Lyman-α emitting galaxies as tracers. The full VIRUS array is due to be deployed
in late 2011 and will provide a powerful new facility instrument for the HET, well suited to the survey niche of the
telescope. VIRUS and HET will open up wide field surveys of the emission-line universe for the first time. We present
the design, cost, and current status of VIRUS as it enters production, and review performance results from the VIRUS
prototype. We also present lessons learned from our experience designing for volume production and look forward to
the application of the VIRUS concept on future extremely large telescopes (ELTs).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We are designing the Keck Cosmic Web Imager (KCWI) as a new facility instrument for the Keck II telescope at the
W. M. Keck Observatory (WMKO). KCWI is based on the Cosmic Web Imager (CWI), an instrument that has recently
had first light at the Hale Telescope. KCWI is a wide-field integral-field spectrograph (IFS) optimized for precision sky
limited spectroscopy of low surface brightness phenomena. KCWI will feature high throughput, and flexibility in field of
view (FOV), spatial sampling, bandpass, and spectral resolution. KCWI will provide full wavelength coverage (0.35 to
1.05 μm) using optimized blue and red channels. KCWI will provide a unique and complementary capability at WMKO
(optical band integral field spectroscopy) that is directly connected to one of the Observatory's strategic goals (faint
object, high precision spectroscopy), at a modest cost and on a competitive time scale, made possible by its simple
concept and the prior demonstration of CWI.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present the first integrated multimode photonic spectrograph, a device we call PIMMS #1. The device comprises
a set of multimode fibres that convert to single-mode propagation using a matching set of photonic lanterns. These
feed to a stack of cyclic array waveguides (AWGs) that illuminate a common detector. Such a device greatly reduces
the size of an astronomical instrument at a fixed spectroscopic resolution. Remarkably, the PIMMS concept is
largely independent of the telescope diameter, input focal ratio and entrance aperture - i.e. one size fits all! The
instrument architecture can also exploit recent advances in astrophotonics (e.g. OH suppression fibres). We present a
movie of the instrument's operation and discuss the advantages and disadvantages of this approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
New multi-core imaging fibre bundles - hexabundles - being developed at the University of Sydney will provide
simultaneous integral field spectroscopy for hundreds of celestial sources across a wide angular field. These are a
natural progression from the use of single fibres in existing galaxy surveys. Hexabundles will allow us to address
fundamental questions in astronomy without the biases introduced by a fixed entrance aperture. We have begun
to consider instrument concepts that exploit hundreds of hexabundles over the widest possible field of view. To
this end, we have characterised the performance of a 61-core fully fused hexabundle and 5 unfused bundles with
7 cores each. All fibres in bundles have 100 micron cores. In the fused bundle, the cores are distorted from a
circular shape in order to achieve a higher fill fraction. The unfused bundles have circular cores and five different
cladding thicknesses which affect the fill fraction. We compare the optical performance of all 6 bundles and find
that the advantage of smaller interstitial holes (higher fill fraction) is outweighed by the increase in FRD, crosstalk
and the poor optical performance caused by the deformation of the fibre cores. Uniformly high throughput
and low cross-talk are essential for imaging faint astronomical targets with sufficient resolution to disentangle
the dynamical structure. Devices already under development will have 100-200 unfused cores, although larger
formats are feasible. The light-weight packaging of hexabundles is sufficiently flexible to allow existing robotic
positioners to make use of them.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We describe the Cosmic Web Imager (CWI), a UV-VIS integral eld spectrograph designed for the Hale 200"
telescope at the Palomar Observatory. CWI has been built specically for the observation of diuse radiation.
The instrument eld of view is 60"40" with spectral resolving power of R5000 and seeing limited spatial
resolution. It utilizes volume phase holographic gratings and is intended to cover the spectral range 3800A to
9500A with an instantaneous bandwidth of 450A. CWI saw rst light in July 2009, and conducted its rst
successful scientic observations in May 2010.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The concept of segmenting the focal plane of an existing 8m class telescope in order to fill it with an array of several fast
cameras has been developed further and in this work the status of an engineering program aimed to produce a design
qualified for the construction, and to assess its cost estimates is presented. The original concept of just having simple
cameras with all identical optical components other than a pupil plane corrector to remove the fixed aberrations at the
off-axis field of a telescope has been extended to introduce a spectroscopic capability and to assess a trade-off between a
very large number (of the order of thousand) of cameras with a small single Field of View with a smaller number of
cameras able to compensate the aberration on a much larger Field of View with a combination of different optical
elements and different ways to mount and align them.
The scientific target of a few thousands multi-slit spectra over a Field of View of a few square degrees, combined with
the ambition to mount this on an existing 8m class telescope makes the scientific rationale of such an instrument a very
interesting one. In the paper we describe the different options for a possible optical design, the trade off between
variations on the theme of the large segmentation and we describe briefly the way this kind of instrument can handle a
multi-slit configuration. Finally, the feasibility of the components and a brief description of how the cost analysis is
being performed are given. Perspectives on the construction of this spectrograph are given as well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A mosaic of two 2k x 4k fully depleted, high resistivity CCD
detectors was installed in the red channel of the Low Resolution
Imaging Spectrograph for the Keck-I Telescope in June, 2009 replacing
a monolithic Tektronix/SITe 2k x 2k CCD. These CCDs were fabricated
at Lawrence Berkeley National Laboratory (LBNL) and packaged and
characterized by UCO/Lick Observatory. Major goals of the detector
upgrade were increased throughput and reduced interference fringing
at wavelengths beyond 800 nm, as well as improvements in the
maintainability and serviceability of the instrument. We report on
the main features of the design, the results of optimizing detector
performance during integration and testing, as well as the
throughput, sensitivity and performance of the instrument as
characterized during commissioning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Near-diffraction limited imaging and spectroscopy in the visible on large (8-10 meter) class telescopes has proved to be
beyond the capabilities of current adaptive optics technologies, even when using laser guide stars. The need for high
resolution visible imaging in any part of the sky suggests that a rather different approach is needed. This paper describes
the results of simulations, experiments and astronomical observations that show that a combination of low order adaptive
optic correction using a 4-field curvature sensor and fast Lucky Imaging strategies with a photon counting CCD camera
systems should deliver 20-25 milliarcsecond resolution in the visible with reference stars as faint as 18.5 magnitude in I
band on large telescopes. Such an instrument may be used to feed an integral field spectrograph efficiently using
configurations that will also be described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present the first stringent tests of a novel calibration system based on a laser frequency comb (LFC) for radial
velocity measurements. The tests were obtained with the high resolution, optical HARPS spectrograph. Photon noise
limited repeatability of 9 cm s-1 was obtained, using only little more than one of 72 echelle orders. In the calibration
curve CCD inhomogeneities showed up and could be calibrated, which were undetectable with previous Th-Ar
calibrations. To obtain an even higher repeatability and lower residuals, a larger spectral bandwidth is necessary. An
improved version of the LFC is currently under development. The results of the latest tests will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We investigate the FRD performance of a 150 μm core fibre for its suitability to the SIDE project.1 This work
builds on our previous work2 (Paper 1) where we examined the dependence of FRD on length in fibres with a
core size of 100 μm and proposed a new multi-component model to explain the results. In order to predict the
FRD characteristics of a fibre, the most commonly used model is an adaptation of the Gloge8model by Carrasco
and Parry3 which quantifies the the number of scattering defects within an optical bre using a single parameter,
d0. The model predicts many trends which are seen experimentally, for example, a decrease in FRD as core
diameter increases, and also as wavelength increases. However the model also predicts a strong dependence on
FRD with length that is not seen experimentally. By adapting the single fibre model to include a second fibre,
we can quantify the amount of FRD due to stress caused by the method of termination. By fitting the model to
experimental data we find that polishing the fibre causes a small increase in stress to be induced in the end of
the fibre compared to a simple cleave technique.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The SPHERE is an exo-solar planet imager, which goal is to detect giant exo-solar planets in the vicinity of bright stars
and to characterize them through spectroscopic and polarimetric observations. It is a complete system with a core made
of an extreme-Adaptive Optics (AO) wavefront correction, a pupil tracker and diffraction suppression through a variety
of coronagraphs. At its back end, a differential dual imaging camera and an integral field spectrograph (IFS) work in the
Near Infrared (NIR) Y, J, H and Ks bands (0.95 - 2.32μm), and a high resolution polarization camera covers the optical
range (0.6 - 0.9 μm). The IFS is a low resolution spectrograph (R~50) working in the near IR (0.95-1.65 microns), an
ideal wavelength range for the detection of giant planet features. In our baseline design the IFU is a new philosophy
microlens array of about 145x145 elements designed to reduce as much as possible the cross talk when working at
diffraction limit. The IFU will cover a field of view of about 1.7 x 1.7 square arcsecs reaching a contrast of 10-7,
providing a high contrast and high spatial resolution "imager" able to search for planet well inside the star PSF.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Instrumentation and Techniques for Exoplanet Detection
The detection of Earth analogues requires extreme Doppler precision and long term stability in order to measure tiny reflex velocities in the host star. The PSF from the spectrometer should be slowly varying with temperature and pressure changes. However, variations in the illumination of the slit and of the spectrograph optics occur on time scales of seconds, primarily because of guiding errors, but also on timescales of minutes, because of changes in the focus or seeing. These variations yield differences in the PSF from observation to observation, which are currently limiting the Doppler precision. Here, we present the design of a low cost fiber optic feed, FINDS, used to stabilize the PSF of the Hamilton spectrograph of Lick observatory along with the first measurements that show dramatic improvement in stability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Lucas Labadie, Rafael Rebolo, Bruno Femenía, Isidro Villó, Anastasio Díaz-Sánchez, Alejandro Oscoz, Roberto López, Jorge A. Pérez-Prieto, Antonio Pérez-Garrido, et al.
In this paper, we present an original observational approach, which combines, for the first time, traditional
speckle imaging with image post-processing to obtain in the optical domain diffraction-limited images with high
contrast (10-5) within 0.5 to 2 arcseconds around a bright star. The post-processing step is based on wavelet
filtering an has analogy with edge enhancement and high-pass filtering. Our I-band on-sky results with the
2.5-m Nordic Telescope (NOT) and the lucky imaging instrument FASTCAM show that we are able to detect
L-type brown dwarf companions around a solar-type star with a contrast ▵I~12 at 2 and with no use of any
coronographic capability, which greatly simplifies the instrumental and hardware approach. This object has
been detected from the ground in J and H bands so far only with AO-assisted 8-10 m class telescopes (Gemini,
Keck), although more recently detected with small-class telescopes in the K band. Discussing the advantage and
disadvantage of the optical regime for the detection of faint intrinsic fluxes close to bright stars, we develop some
perspectives for other fields, including the study of dense cores in globular clusters. To the best of our knowledge
this is the first time that high contrast considerations are included in optical speckle imaging approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In the last six years, thanks to the very high radial velocity precision of the HARPS spectrograph, it was possible to
detect 21 out of the 30 super-Earth (extrasolar planets masses below 20 times the mass of the Earth) discovered up to
date. The radial velocity precision of the instrument is estimated around 80 cm/s on a single measurement.
The main instrumental limitations are the wavelength calibration and the stability of the light injection. We address both
factors and present the results of recent tests on the HARPS spectrograph.
We have identified the laser frequency comb as the ideal wavelength calibrator, due to the width, density and flux of the
lines, and to its intrinsic stability. The results from the recent tests that we performed on HARPS are encouraging.
The accurate guiding of the telescope is critical to maintain a stable light distribution at the injection stage, where the
light is sent into the spectrograph entrance fiber. To pursue this goal we are testing a secondary guiding system which is
able to apply the guiding corrections twenty times faster than the primary guiding system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Chinese national science project-LAMOST successfully received its official blessing in June, 2009. Its aperture is about
4m, and its focal plane of 1.75m in diameter, corresponding to a 5° field of view, can accommodate as many as 4000
optical fibers, and feed 16 multi-object low-medium resolution spectrometers (LRS). In addition, a new technique called
External Dispersed Interferometry (EDI) is successfully used to enhance the accuracy of radial velocity measurement by
heterodyning an interference spectrum with absorption lines. For further enhancing the survey power of LAMOST, a
major astronomical project, Multi-object Exoplanet Survey System (MESS) based on this advanced technique, is being
developed by Nanjing Institute of Astronomical Optics and Technology (NIAOT) and National Astronomical
Observatories of China (NAOC), and funded by Joint Fund of Astronomy, which is set up by National Natural Sciences
Foundation of China (NSFC) and Chinese Academy of Sciences (CAS). This system is composed of a multi-object fixed
delay Michelson interferometer (FDMI) and a multi-object medium resolution spectrometer (R=5000). In this paper, a
prototype design of FDMI is given, including optical system and mechanical structure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We report on high-accuracy, high-resolution (< 20mas) stellar measurements obtained in the near infrared (
2.2 microns) at the Palomar 200 inch telescope using two elliptical (3m x 1.5m) sub-apertures located 3.4m
apart. Our interferometric coronagraph, known as the "Palomar Fiber Nuller" (PFN), is located downstream
of the Palomar adaptive optics (AO) system and recombines the two separate beams into a common singlemode
fiber. The AO system acts as a "fringe tracker", maintaining the optical path difference (OPD) between
the beams around an adjustable value, which is set to the central dark interference fringe. AO correction
ensures high efficiency and stable injection of the beams into the single-mode fiber. A chopper wheel and a fast
photometer are used to record short (< 50ms per beam) interleaved sequences of background, individual beam
and interferometric signals. In order to analyze these chopped null data sequences, we developed a new statistical
method, baptized "Null Self-Calibration" (NSC), which provides astrophysical null measurements at the 0.001
level, with 1 σ uncertainties as low as 0.0003. Such accuracy translates into a dynamic range greater than 1000:1
within the diffraction limit, demonstrating that the approach effectively bridges the traditional gap between
regular coronagraphs, limited in angular resolution, and long baseline visibility interferometers, whose dynamic
range is restricted to 100:1. As our measurements are extremely sensitive to the brightness distribution very
close to the optical axis, we were able to constrain the stellar diameters and amounts of circumstellar emission
for a sample of very bright stars. With the improvement expected when the PALM-3000 extreme AO system
comes on-line at Palomar, the same instrument now equipped with a state of the art low noise fast read-out near
IR camera, will yield 10-4 to 10-3 contrast as close as 30 mas for stars with K magnitude brighter than 6. Such
a system will provide a unique and ideal tool for the detection of young (<100 Myr) self-luminous planets and
hot debris disks in the immediate vicinity (0.1 to a few AUs) of nearby (< 50pc) stars.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The detection and characterization of extrasolar planets by direct imaging is becoming more and
more promising with the preparation of dedicated high-contrast instruments and the help of new data
analysis techniques. SPHERE (Spectro-Polarimetric High-contrast imager for Exoplanets REsearch)
is currently being developed as part of the second generation instruments of the ESO-VLT. IRDIS,
one of the SPHERE subsystems, will provide dual-band imaging with several filter pairs covering
the near-infrared from 0.95 to 2.3 microns, among with other observing modes such as long slit
spectroscopy and infrared polarimetry. This paper describes the instrument performances and the
impact of instrumental calibrations on finding and characterizing extrasolar planets, and on
observing strategies. It discusses constraints to achieve the required contrast of ~106 within few
hours of exposure time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical
Echelle Spectrographs) is a next-generation instrument to be built for the 3.5m telescope at the Calar Alto
Observatory by a consortium of Spanish and German institutions. Conducting a five-year exoplanet survey
targeting ~ 300 M stars with the completed instrument is an integral part of the project. The CARMENES
instrument consists of two separate spectrographs covering the wavelength range from 0.52 to 1.7 μm at a spectral
resolution of R = 85, 000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed
in a temperature-stabilized environment in vacuum tanks, to enable a 1m/s radial velocity precision employing
a simultaneous ThAr calibration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We describe the construction and commissioning of FIRE, a new 0.8-2.5μm echelle spectrometer for the Magellan/
Baade 6.5 meter telescope. FIRE delivers continuous spectra over its full bandpass with nominal spectral
resolution R = 6000. Additionally it offers a longslit mode dispersed by the prisms alone, covering the full z to
K bands at R ~ 350. FIRE was installed at Magellan in March 2010 and is now performing shared-risk science
observations. It is delivering sharp image quality and its throughput is sufficient to allow early observations of
high redshift quasars and faint brown dwarfs. This paper outlines several of the new or unique design choices
we employed in FIRE's construction, as well as early returns from its on-sky performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
KMOS is a near-infrared multi-object integral-field spectrometer which is one of a suite of second-generation
instruments under construction for the VLT. The instrument is being built by a consortium of UK and German
institutes working in partnership with ESO and is now in the manufacture, integration and test phase. In this paper
we present an overview of recent progress with the design and build of KMOS and present the first results from the
subsystem test and integration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
GNOSIS is an OH suppression unit to be used in conjunction with existing spectrographs. The OH suppression
is achieved using fibre Bragg gratings (FBGs), and will deliver the darkest near-infrared background of any
ground-based instrument. Laboratory and on-sky tests demonstrate that FBGs can suppress OH lines by 30dB
whilst maintaing > 90% throughput between the lines, resulting in a 4 mag decrease in the background.
In the first implementation GNOSIS will feed IRIS2 on the AAT. It will consist of a seven element lenslet
array, covering 1.4" on the sky, and will suppress the 103 brightest OH lines between 1.47 and 1.70 μm. Future
upgrades will include J-band suppression and implementation on an 8m telescope.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The large (~10 m) aperture of the Southern African Large Telescope (SALT) coupled with the unique capabilities
of the Robert Stobie Spectrograph (RSS), promises unparalleled prospects for polarimetric observations on an
8 - 10 m class telescope. RSS is a highly versatile first-generation instrument of the SALT. Results from
some of the first commissioning observations with the RSS are presented. A method for reducing SALT RSS
spectropolarimetry data is proposed and verified on observations of unpolarised and polarised standard stars. The
results provide estimates of telescope and instrumental polarisation as well as a calibration of the instrument's
polarimetric position angle offset.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We report on the development of ARCONS, the ARray Camera for Optical to Near-IR Spectrophotometry.
This photon counting integral field unit (IFU), being built at UCSB and Caltech with detectors fabricated at
JPL, will use a unique, highly multiplexed low temperature detector technology known as Microwave Kinetic
Inductance Detectors (MKIDs). These detectors, which operate at 100 mK, should provide photon counting
with energy resolution of R = E/δE > 20 and time resolution of a microsecond, with a quantum efficiency of
around 50%. We expect to field the instrument at the Palomar 200" telescope in the first quarter of 2011 with
an array containing 1024 pixels in a 32×32 pixel form factor to yield a field of view of approximately 10×10
arcseconds. The bandwidth of the camera is limited by the rising sky count rate at longer wavelengths, but
we anticipate a bandwidth of 0.35 to 1.35 μm will be achievable. A simple optical path and compact dewar
utilizing a cryogen-free adiabatic demagnetization refridgerator (ADR) allows the camera to be deployed quickly
at Naysmith or Coud´e foci at a variety of telescopes. A highly expandable software defined radio (SDR) readout
that can scale up to much larger arrays has been developed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Less than 20 years after the discovery of the first extrasolar planet, exoplanetology is rapidly growing with more than
one discovery every week on average since 2007. An important step in exoplanetology is the chemical characterization
of exoplanet atmospheres. It has recently been shown that molecular signatures of transiting exoplanets can be studied
from the ground. To advance this idea and prepare more ambitious missions such as THESIS, a dedicated spectrometer
named the New Mexico Tech Extrasolar Spectroscopic Survey Instrument (NESSI) is being built at New Mexico Tech
in collaboration with the NASA Jet Propulsion Laboratory. NESSI is a purpose-built multi-object spectrograph that
operates in the J, H, and K-bands with a resolution of R = 1000 in each, as well as a lower resolution of R = 250 across
the entire J/H/K region.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Infrared Imaging System (IRIS) is a 0.8m telescope and a 1024×1024 pixels camera (IRISCAM) with a HAWAII-1
detector array. IRIS is located at the Cerro Armazones Observatory in Chile that is operated by the Ruhr University
Bochum jointly with the Universidad Católica del Norte in Antofagasta. It will be used primarily to survey star-forming
regions for variability. Our goal is to discover young stellar objects undergoing accretion instabilities or rotational
modulation of star spots, eclipsing binaries, and variable reflection nebulae. The telescope and the infrared camera are
completed and first light was achieved in May of 2010. IRIS is currently being tested and characterized, before the longterm
monitoring project will commence.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We have developed a germanium immersion grating mid-infrared cryogenic spectrograph (GIGMICS) designed for the
Nasmyth focus stage of NAOJ Subaru 8.2 m telescope, which operates at N-band (8-13 μm) in wavelength with the R ~
50,000. A single crystal germanium immersion echelle grating (30 × 30 × 72 mm) for collimated beam size of Φ28 mm
was fabricated by utilizing ultra precision micro-grinding method coupled with the ELID (ELectrolytic In-process
Dressing) technique (Ohmori, H. 1992)1. All optical components are arranged on the 800 mm diameter cold optical base
plate (~30 K) of the cryostat. By the Si:As IBC (Impurity Band Conductor) focal plane array (FPA) detector (412 × 512
pixels, unit pixel size 30 μm) operated at 5 K simultaneously acquires ~13 % wavelength coverage for N-band. The
instrument has been assembled and is now tested for the application to the gas-phase IR high-resolution spectroscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
John C. Wilson, Fred Hearty, Michael F. Skrutskie, Steven Majewski, Ricardo Schiavon, Daniel Eisenstein, Jim Gunn, Basil Blank, Chuck Henderson, et al.
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) will use a dedicated 300-fiber, narrow-band
(1.5-1.7 micron), high resolution (R~30,000), near-infrared spectrograph to survey approximately 100,000 giant stars
across the Milky Way. This survey, conducted as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize
our understanding of kinematical and chemical enrichment histories of all Galactic stellar populations. The instrument,
currently in fabrication, will be housed in a separate building adjacent to the 2.5 m SDSS telescope and fed light via
approximately 45-meter fiber runs from the telescope. The instrument design includes numerous technological
challenges and innovations including a gang connector that allows simultaneous connection of all fibers with a single
plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio
degradation must be minimized, a large (290 mm x 475 mm elliptically-shaped recorded area) mosaic-VPH, an f/1.4 sixelement
refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4 m x 2.3 m x 1.3 m.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
MOSFIRE is a unique multi-object spectrometer and imager for the Cassegrain focus of the 10 m Keck 1 telescope. A
refractive optical design provides near-IR (0.97 to 2.45 μm) multi-object spectroscopy over a 6.14' x 6.14' field of view
with a resolving power of R~3,270 for a 0.7" slit width (2.9 pixels in the dispersion direction), or imaging over a field of
view of 6.8' diameter with 0.18" per pixel sampling. A single diffraction grating can be set at two fixed angles, and
order-sorting filters provide spectra that cover the K, H, J or Y bands by selecting 3rd, 4th, 5th or 6th order respectively. A
folding flat following the field lens is equipped with piezo transducers to provide tip/tilt control for flexure compensation
at the 0.1 pixel level. A special feature of MOSFIRE is that its multiplex advantage of up to 46 slits is achieved using a
cryogenic Configurable Slit Unit or CSU developed in collaboration with the Swiss Centre for Electronics and Micro
Technology (CSEM). The CSU is reconfigurable under remote control in less than 5 minutes without any thermal
cycling of the instrument. Slits are formed by moving opposable bars from both sides of the focal plane. An individual
slit has a length of 7.1" but bar positions can be aligned to make longer slits. When masking bars are removed to their
full extent and the grating is changed to a mirror, MOSFIRE becomes a wide-field imager. Using a single, ASIC-driven,
2K x 2K H2-RG HgCdTe array from Teledyne Imaging Sensors with exceptionally low dark current and low noise,
MOSFIRE will be extremely sensitive and ideal for a wide range of science applications. This paper describes the design
and testing of the instrument prior to delivery later in 2010.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
OCTOCAM is a multi-channel imager and spectrograph that has been proposed for the 10.4m GTC telescope. It will use
dichroics to split the incoming light to produce simultaneous observations in 8 different bands, ranging from the
ultraviolet to the near-infrared. The imaging mode will have a field of view of 2' x 2' in u, g, r, i, z, J, H and KS bands,
whereas the long-slit spectroscopic mode will cover the complete range from 4,000 to 23,000 A with a resolution of 700
- 1,000 (depending on the arm and slit width). An additional mode, using an image slicer, will deliver a spectral
resolution of over 3,000. As a further feature, it will use state of the art detectors to reach high readout speeds of the
order of tens of milliseconds. In this way, OCTOCAM will be occupying a region of the time resolution - spectral
resolution - spectral coverage diagram that is not covered by a single instrument in any other observatory, with an
exceptional sensitivity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
KMOS is a modular design consisting of three identical parallel segments which in turn contain eight integral field
channels. The assembly and integration plan is to build up the instrument step by step and test performance at each stage.
The first end to end chain was complete at the end of 2009 and testing commenced. This paper describes the philosophy
and management of the test programme, the testing procedures used to study the instrument performance as the light path
was built and the results obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The ISS (Integral-field Spectrograph System) has been designed as part of the EAGLE Phase A Instrument Study for the
E-ELT. It consists of two input channels of 1.65x1.65 arcsec field-of-view, each reconfigured spatially by an imageslicing
integral-field unit to feed a single near-IR spectrograph using cryogenic volume-phase-holographic gratings to
disperse the image spectrally. A 4k x 4k array detector array records the dispersed images. The optical design employs
anamorphic magnification, image slicing, VPH gratings scanned with a novel cryo-mechanism and a three-lens camera.
The mechanical implementation features IFU optics in Zerodur, a modular bench structure and a number of highprecision
cryo-mechanisms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
X-shooter is the first second-generation instrument newly commissioned a the VLT. It is a high efficiency single
target intermediate resolution spectrograph covering the range 300 - 2500 nm in a single shot. We summarize
the main characteristics of the instrument and present its performances as measured during commissioning and
the first months of science operations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
VISTA was designed as a survey facility, and was optimized for use with the 64Mpix VISTA IR Camera in the sense
that the optical system of the instrument and telescope was designed as a single entity. The commissioning of the IR
camera therefore formed a major part of the system integration and commissioning of the whole VISTA system. We
describe some aspects of the commissioning process for VISTA, the interplay between the camera and telescope
systems, and summarize the results of the verification phase.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Fibre Multi-Object Spectrograph for Subaru Telescope (FMOS) is a near-infrared instrument with 400
fibres in a 30' filed of view at F/2 prime focus. To observe 400 objects simultaneously, we have developed a fibre
positioner called "Echidna" using a tube piezo actuator. We have also developed two OH-airglow suppressed and
refrigerated spectrographs. Each spectrograph has two spectral resolution modes: the low-resolution mode and
the high-resolution mode. The low-resolution mode covers the complete wavelength range of 0.9 - 1.8 μm with
one exposure, while the high-resolution mode requires four exposures at different camera positions to cover the
full wavelength range. The first light was accomplished in May 2008. The science observations and the open-use
observations begin in May 2010.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
LUCIFER 1 is the rst of two identical camera-spectrograph units installed at the LBT (Large Binocular Telescope)
on Mount Graham in Arizona. Its commissioning took place between September 2008 and November
2009 and has immediately been followed by science operations since December 2009.
LUCIFER has a 4x4 arcminute eld of view. It is equipped with a 2048x2048 pixel HAWAII-2 array, suitable
lters (broad-band z, J, H, K & Ks plus 12 medium and narrow band near-infrared lters) and three gratings for
spectroscopy for a resolution of up to 15000. LUCIFER has 3 cameras: two specic for seeing limited imaging
(the N3.75 camera, with 0.12"/pixel) and spectroscopy (the N1.8 camera, with 0.25"/pixel) and one for diraction
limited observations (the N30 camera). We report here about the completed seeing-limited commissioning, thus
using only two of the cameras.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Korea Astronomy and Space Science Institute (KASI) and the Department of Astronomy at the University of Texas
at Austin (UT) are developing a near infrared wide-band high resolution spectrograph, IGRINS. IGRINS can observe all
of the H- and K-band atmospheric windows with a resolving power of 40,000 in a single exposure. The spectrograph
uses a white pupil cross-dispersed layout and includes a dichroic to divide the light between separate H and K cameras,
each provided with a 2kx2k HgCdTe detector. A silicon immersion grating serves as the primary disperser and a pair of
volume phased holographic gratings serve as cross dispersers, allowing the high resolution echelle spectrograph to be
very compact. IGRINS is designed to be compatible with telescopes ranging in diameter from 2.7m (the Harlan J. Smith
telescope; HJST) to 4 - 8 m telescopes. Commissioning and initial operation will be on the 2.7m telescope at McDonald
Observatory from 2013.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The science instrument for GPI (Gemini Planet Imager) is a cryogenic integral field spectrograph
based on a lenslet array. The integral field nature of the instrument allows for a full mapping of the
focal plane at coarse spectral resolution. With such a data cube, artifacts within the PSF such as
residual speckles can be suppressed. Additionally, the initial detection of any candidate planet will
include spectral information that can be used to distinguish it from a background object: candidates
can be followed up with detailed spectroscopic observations. The optics between the lenslet array
and the detector are essentially a standard spectrograph with a collimating set of lenses, a dispersive
prism and a camera set of lenses in a folded assembly. We generally refer to this optical set as the
spectrograph optics. This paper describes the laboratory optical performances over the field of view.
The test procedure includes the imaging performances in both non dispersive and dispersive mode.
The test support equipments include a test cryostat, an illumination module with monochromatic
fiber laser, a wideband light source and a test detector module.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The new operational mode of aperture masking interferometry has been added to the CONICA camera which
lies downstream of the Adaptive Optics (AO) corrected focus provided by NAOS on the VLT-UT4 telescope.
Masking has been shown to deliver superior PSF calibration, rejection of atmospheric noise and robust recovery
of phase information through the use of closure phases. Over the resolution range from about half to several
resolution elements, masking interferometry is presently unsurpassed in delivering high fidelity imaging and
direct detection of faint companions. Here we present results from commissioning data using this powerful new
operational mode, and discuss the utility for masking in a variety of scientific contexts. Of particular interest is
the combination of the CONICA polarimetry capabilities together with SAM mode operation, which has revealed
structures never seen before in the immediate circumstellar environments of dusty evolved stars.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present the optomechanical design of the Magellan VisAO Integral Field Spectrograph (VisAO IFS),
designed to take advantage of Magellan's AO system and its 85.1cm concave ellipsoidal Adaptive Secondary Mirror
(ASM). With 585 actuators and an equal number of actively-controlled modes, this revolutionary second generation
ASM will be the first to achieve moderate Strehl ratios into the visible wavelength regime. We have designed the VisAO
IFS to be coupled to either Magellan's LDSS-3 spectrograph or to the planned facility M2FS fiber spectrograph and to
optimize VisAO science. Designed for narrow field-of-view, high spatial resolution science, this lenslet-coupled fiberfed
IFS will offer exciting opportunities for scientific advancement in a variety of fields, including protoplanetary disk
morphology and chemistry, resolution and spectral classification of tight astrometric binaries, seasonal changes in the
upper atmosphere of Titan, and a better understanding of the black hole M-sigma relation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Two feasibility studies for spectrographs that can deliver at least 4000 MOS slits over a 1° field at the prime focuses of
the Anglo-Australian and Calar Alto Observatories have been completed. We describe the design and science case of the
Calar Alto eXtreme Multiplex Spectrograph (XMS) for which an extended study, half way between feasibility study and
phase-A, was made. The optical design is quite similar than in the AAO study for the Next Generation 1 degree Field
(NG1dF) but the mechanical design of XMS is quite different and much more developed. In a single night, 25000 galaxy
redshifts can be measured to z~0.7 and beyond for measuring the Baryon Acoustic Oscillation (BAO) scale and many
other science goals. This may provide a low-cost alternative to WFMOS for example and other large fibre spectrographs.
The design features four cloned spectrographs which gives a smaller total weight and length than a unique spectrograph
to makes it placable at prime focus. The clones use a transparent design including a grism in which all optics are about
the size or smaller than the clone rectangular subfield so that they can be tightly packed with little gaps between
subfields. Only low cost glasses are used; the variations in chromatic aberrations between bands are compensated by
changing a box containing the grism and two adjacent lenses. Three bands cover the 420nm to 920nm wavelength range
at 10A resolution while another cover the Calcium triplet at 3A. An optional box does imaging. We however also studied
different innovative methods for acquisition without imaging. A special mask changing mechanism was also designed to
compensate for the lack of space around the focal plane. Conceptual designs for larger projects (AAT 2º field, CFHT,
VISTA) have also been done.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Dark Energy Camera is an wide field imager currently
under construction for the Dark Energy Survey.
This instrument will use fully depleted 250 μm thick
CCD detectors selected for their higher quantum efficiency
in the near infrared with respect to thinner devices.
The detectors were developed by LBNL using
high resistivity Si substrate. The full set of scientific
detectors needed for DECam has now been fabricated,
packaged and tested. We present here the results of
the testing and characterization for these devices and
compare these results with the technical requirements
for the Dark Energy Survey.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present on-sky performance results of a new technique, speckle stabilization, with the Stabilized sPeckle
Integral Field Spectrograph Proof-Of-Concept (SPIFS-POC) instrument. The SPIFS-POC is an optical-imaging
instrument capable of high spatial resolutions much finer than the seeing-limit. It achieves this aim by measuring
speckle patterns in real time (through the use of an L3CCD), finding the highest quality speckle, and stabilizing
it onto a traditional, low readout speed science camera through the use of a fast steering mirror. This process
is repeated at ≈100 Hz over the course of long exposures resulting in a high-resolution core surrounded by a
diffuse halo. We show that in the Sloan z' bands, SPIFS is able to acquire spatial resolutions much greater than
the seeing limit, even approaching 3λ/D. We also discuss improvements for the next phase of the SPIFS project
where we fully expect to be able to recover diffraction-limited spatial resolutions in the optical.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
FIFI LS is the German far-infrared integral field spectrometer for the SOFIA airborne observatory. The instrument consists
of two independent integral field spectrometers for two different wavelength bands (45-110 μm and 100-200 μm). A
dichroic filter enables simultaneous observation of two different spectral lines in the same field-of view. This allows very
efficient mapping of extended regions with FIFI LS in many important far-infrared cooling lines with line ratios sensitive to
temperature and density.
FIFI LS will become a facility instrument for SOFIA. In the next two years it will become a fully commissioned facility
instrument. After its commission, FIFI LS will be available for general observing with a large science potential. In this
paper, we will also discuss the science of FIFI LS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
FORCAST is the "first light" U. S. science instrument to fly aboard SOFIA. FORCAST offers dual channel imaging in
discrete filters at 5 - 25 microns and 30 - 40 microns, with diffraction-limited imaging at wavelengths > 15 microns.
FORCAST has a plate scale of 0.75 arcsec per pixel, giving it a 3.2 arcmin x 3.2 arcmin FOV on SOFIA. We give a
status update on FORCAST development, including the performance of new far-IR filters; design and performance of
the calibration box; laboratory operations and performance; and results from ground-based and first flight operations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
CASIMIR, the Caltech Airborne Submillimeter Interstellar Medium Investigations Receiver, is a far-infrared
and submillimeter heterodyne spectrometer, being developed for the Stratospheric Observatory For Infrared Astronomy,
SOFIA. CASIMIR will use newly developed superconducting-insulating-superconducting (SIS) mixers.
Combined with the 2.5 m mirror of SOFIA, these detectors will allow observations with high sensitivity to be
made in the frequency range from 500 GHz up to 1.4 THz. Initially, at least 5 frequency bands in this range
are planned, each with a 4-8 GHz IF passband. Up to 4 frequency bands will be available on each flight and
bands may be swapped readily between flights. The local oscillators for all bands are synthesized and tuner-less,
using solid state multipliers. CASIMIR also uses a novel, commercial, field-programmable gate array (FPGA)
based, fast Fourier transform spectrometer, with extremely high resolution, 22000 (268 kHz at 6 GHz), yielding
a system resolution > 106. CASIMIR is extremely well suited to observe the warm, ≈ 100K, interstellar medium,
particularly hydrides and water lines, in both galactic and extragalactic sources. We present an overview of the
instrument, its capabilities and systems. We also describe recent progress in development of the local oscillators
and present our first astronomical observations obtained with the new type of spectrometer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Ultraviolet emission from the first generation of stars in the Universe ionized the intergalactic medium in a
process which was completed by z ~ 6; the wavelength of these photons has been redshifted by (1 + z) into
the near infrared today and can be measured using instruments situated above the Earth's atmosphere. First
flying in February 2009, the Cosmic Infrared Background ExpeRiment (CIBER) comprises four instruments
housed in a single reusable sounding rocket borne payload. CIBER will measure spatial anisotropies in the
extragalactic IR background caused by cosmological structure from the epoch of reionization using two broadband
imaging instruments, make a detailed characterization of the spectral shape of the IR background using a
low resolution spectrometer, and measure the absolute brightness of the Zodiacal light foreground with a high
resolution spectrometer in each of our six science fields. The scientific motivation for CIBER and details of its
first and second flight instrumentation will be discussed. First flight results on the color of the zodiacal light
around 1 μm and plans for the future will also be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This communication shows the feasibility study of a new instrument designed for the 4 meter European Solar Telescope
(EST) for high resolution spectro-polarimetric observations. This paper is specifically focused on the spectrographs that
allow the simultaneous observation of 5 visible and 4 near-infrared wavelengths (complying with the science
requirements), with 8 entrance slits of 200arcsec each fed by an integral field unit covering an area on the solar surface
of 9 x 9 arcsec2.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The area of high precision solar spectropolarimetry has made great advances in recent years and the Zurich
IMaging POLarimeter (ZIMPOL) systems have played a major role in that. ZIMPOL reaches a polarimetric
accuracy of 10-5 by using fast (kHz) polarization modulation/demodulation of the light beam in combination
with large-area array detectors. A new generation of improved cameras (ZIMPOL-3) are being implemented for
the scientific observations at the solar observatory at Istituto Ricerche Solari Locarno. The new system is based
on a flexible and compact modular design, which easily adapts to new applications. A faster electronics and new
sensors with higher quantum efficency compared to the previous ZIMPOL versions, allow to achieve a better
overall efficency. Future plans include observing campaigns at foremost large telescopes and the exploration of
new technologies (e.g. CMOS).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Auxiliary Full-Disc Telescope (AFDT) will be used for the orientation of the observer on the solar disc
and in its surroundings, for an easy guidance of the European Solar Telescope (EST) to a selected target,
and for precise coordinate measurements. AFDT can be used as an autonomous robotic telescope for synoptic
observations and records of solar activity also when no observations are carried out at the EST main telescope.
The principal functions of AFDT and the related requirements are summarised. The specific axial mechanical
structure accommodating the refractor optical system is outlined. The optical system and its components are
described. Two alternatives of the positional control system - the active guiding system and the passive guiding
system - are described and their functionality is analysed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
EST is a project for a 4-meter class telescope to be located in the Canary Islands. EST will be optimized for studies of
the magnetic coupling between the photosphere and the chromosphere. This requires high spatial and temporal resolution
diagnostics tools of properties of the plasma, by using multiple wavelength spectropolarimetry. To achieve these goals,
visible and near-IR multi-purpose spectrographs are being designed to be compatible with different modes of use: LsSS
(Long-slit Standard Spectrograph), multi-slit multi-wavelength spectrograph with an integral field unit, TUNIS (Tunable
Universal Narrow-band Imaging Spectrograph), and new generation MSDP (Multi-channel Subtractive Double-pass
Spectrograph). In this contribution, these different instrumental configurations are described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
At future telescopes, adaptive optics systems will play a role beyond the correction of Earth's atmosphere.
These systems are capable of delivering information that is useful for instrumentation, e.g. if reconstruction
algorithms are employed to increase the spatial resolution of the scientific data. For the 4m aperture Advanced
Technology Solar Telescope (ATST), a new generation of state-of-the-art instrumentation is developed that will
deliver observations of the solar surface at unsurpassed high spatial resolution. The planned Visual Broadband
Imager (VBI) is one of those instruments. It will be able to record images at an extremely high rate and compute
reconstructed images close to the telescope's theoretical diffraction limit using a speckle interferometry algorithm
in near real-time. This algorithm has been refined to take data delivered by the adaptive optics system into
account during reconstruction. The acquisition and reconstruction process requires the use of a high-speed data
handling infrastructure to retrieve the necessary data from both adaptive optics system and instrument cameras.
We present the current design of this infrastructure for the ATST together with a feasibility analysis of the
underlying algorithms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented.
Conceptual designs for the three first light instruments (IRIS, WFOS and IRMS) are in progress, as well as feasibility
studies of MIRES. Considerable effort is underway to understand the end-to-end performance of the complete telescopeadaptive
optics-instrument system under realistic conditions on Mauna Kea. Highly efficient operation is being designed
into the TMT system, based on a detailed investigation of the observation workflow to ensure very fast target acquisition
and set up of all subsystems. Future TMT instruments will almost certainly involve contributions from institutions in
many different locations in North America and partner nations. Coordinating and optimizing the design and construction
of the instruments to ensure delivery of the best possible scientific capabilities is an interesting challenge. TMT
welcomes involvement from all interested instrument teams.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper we present a brief status report on the conceptual designs of the instruments and adaptive optics modules
that have been studied for the European Extremely Large Telescope (E-ELT). In parallel with the design study for the
42-m telescope, ESO launched 8 studies devoted to the proposed instruments and 2 for post-focal adaptive optics
systems. The studies were carried out in consortia of ESO member state institutes or, in two cases, by ESO in
collaboration with external institutes. All studies have now been successfully completed. The result is a powerful set of
facility instruments which promise to deliver the scientific goals of the telescope.
The aims of the individual studies were broad: to explore the scientific capabilities required to meet the E-ELT science
goals, to examine the technical feasibility of the instrument, to understand the requirements placed on the telescope
design and to develop a delivery plan. From the perspective of the observatory, these are key inputs to the development
of the proposal for the first generation E-ELT instrument suite along with the highest priority science goals and
budgetary and technical constraints. We discuss the lessons learned and some of the key results of the process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Giant Magellan Telescope (GMT) is a 24.5m diameter optical/infrared telescope. Its seven 8.4m primary mirrors
give it a collecting area equivalent to a 21.4m filled aperture. The ten GMT partners are constructing the telescope at the
Las Campanas Observatory in Chile with first light planned for the end of 2018. In this paper, we describe the plans for
the first-generation focal plane instrumentation for the telescope. The GMTO Corporation has solicited studies for
instruments capable of carrying out the broad range of objectives outlined in the GMT Science Case. Six instruments
have been selected for 14 month long conceptual design studies. We briefly describe the features of these instruments
and give examples of the major science questions that they can address.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The early future of astronomy will be dominated by Extremely Large Telescopes where the focal
lengths will be of the order of several hundred meters. This yields focal plane sizes of roughly one
square meter to obtain a field of view of about 5 x 5 arcmin. When operated in seeing limited mode this
field is correctly sampled with 1x1mm pixels. Such a sampling can be achieved using a peculiar array
of tiny CMOS active photodiodes illuminated through microlenses or lightpipes. If the photodiode is
small enough and utilizes the actual pixel technology, its dark current can be kept well below the sky
background photocurrent, thus avoiding the use of cumbersome cryogenics systems. An active smart
electronics will manage each pixel up to the A/D conversion and data transfer. This modular block is
the Pixel-One. A 30x30 mm tile filled with 1000 Pixel-Ones could be the basic unit to mosaic very
large focal planes. By inserting dispersion elements inside the optical path of the lenslet array one
could also produce a low dispersed spectrum of each focal plane sub-aperture and, by using an array of
few smart photodiodes, also get multi-wavelength information in the optical band for each equivalent
focal plane pixel. An application to the E-ELT is proposed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Multi-Object Broadband Imaging Echellette (MOBIE) is the seeing-limited, wide-field multi-object optical imaging
spectrograph planned for first-light operation on the Thirty Meter Telescope (TMT). Following the completion of a
feasibility study and requirements review in December 2008, the MOBIE instrument project, based at the University of
California Observatories (UCO) on the UC Santa Cruz campus, entered a conceptual design phase. In this paper, we
describe the latest developments in the instrument optical design, and progress in the conceptual design of the optomechanical
and mechanical elements for the instrument.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Olivier Le Fèvre, Dario Maccagni, Stéphane Paltani, Lucien Hill, David Le Mignant, Laurence Tresse, Francisco Garzon Lopez, Omar Almaini, Jarle Brinchmann, et al.
We present the science, design and performances of DIORAMAS, an imager and multi-slit spectrograph for the
European Extremely Large Telescope. It covers a wide 6.8x6.8 arcmin2 field, a large wavelength range 0.37 to 1.6
microns. The exceptional performances of this concept will enable extremely deep images to magnitudes AB~30 and
high multiplex spectroscopy with up to ~500 slits observed simultaneously at spectral resolutions from R~300 to more
than 120 slits at R~3000. The technical design is robust with only proven technology, and DIORAMAS could be
developed on a timescale compatible with the EELT first light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We present an overview of the design of IRIS, an infrared (0.85 - 2.5 micron) integral field spectrograph and imaging
camera for the Thirty Meter Telescope (TMT). With extremely low wavefront error (<30 nm) and on-board wavefront
sensors, IRIS will take advantage of the high angular resolution of the narrow field infrared adaptive optics system
(NFIRAOS) to dissect the sky at the diffraction limit of the 30-meter aperture. With a primary spectral resolution of
4000 and spatial sampling starting at 4 milliarcseconds, the instrument will create an unparalleled ability to explore high
redshift galaxies, the Galactic center, star forming regions and virtually any astrophysical object. This paper summarizes
the entire design and basic capabilities. Among the design innovations is the combination of lenslet and slicer integral
field units, new 4Kx4k detectors, extremely precise atmospheric dispersion correction, infrared wavefront sensors, and a
very large vacuum cryogenic system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
MICADO is the adaptive optics imaging camera for the E-ELT. It has been designed and optimised to be mounted
to the LGS-MCAO system MAORY, and will provide diffraction limited imaging over a wide (~1 arcmin) field
of view. For initial operations, it can also be used with its own simpler AO module that provides on-axis
diffraction limited performance using natural guide stars. We discuss the instrument's key capabilities and
expected performance, and show how the science drivers have shaped its design. We outline the technical
concept, from the opto-mechanical design to operations and data processing. We describe the AO module,
summarise the instrument performance, and indicate some possible future developments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
SIMPLE is an optimized near IR echelle spectrograph for the E-ELT assisted by adaptive optics. It delivers a complete
0.84-2.5μm spectrum in one exposure with resolution up to R=130,000, nearly diffraction limited pixel scale and
limiting magnitudes down to JHK~20. Its most prominent science cases include the study of the intergalactic medium in
the early Universe (z>6) and of the atmospheres of exo-planet transiting nearby low mass stars.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A mid-infrared imager and spectrometer is under consideration for construction in the first decade of the Thirty-
Meter Telescope (TMT) operation (see the companion paper by Okamoto). MIRES, a mid-infrared high-spectral
resolution optimized instrument, was previously proposed to provide these capabilities to the TMT community.
We have revised the design in order to provide an improved optical design for the high-spectral resolution
mode with R=120,000, improved imaging with sky chopping, low-spectral resolution mode with an integral
field spectrograph, and polarimetry. In this paper we describe the optical design concepts currently under
consideration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
EAGLE is an instrument under consideration for the European Extremely Large Telescope (E-ELT). EAGLE will be
installed at the Gravity Invariant Focal Station of the E-ELT. The baseline design consists of 20 IFUs deployable over a
patrol field of ~40 arcmin2. Each IFU has an individual field of view of ~ 1.65" x 1.65". While EAGLE can operate with
the Adaptive Optics correction delivered by the telescope, its full and unrivaled scientific power will be reached with the
added value of its embedded Multi-Object Adaptive Optics System (MOAO). EAGLE will be a unique and efficient
facility for spatially-resolved, spectroscopic surveys of high-redshift galaxies and resolved stellar populations. We detail
the three main science drivers that have been used to specify the top level science requirements. We then present the
baseline design of the instrument at the end of Phase A, and in particular its Adaptive Optics System. We show that the
instrument has a readiness level that allows us to proceed directly into phase B, and we indicate how the instrument
development is planned.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Presently, dedicated instruments at large telescopes (SPHERE for the VLT, GPI for Gemini) are about to discover and
explore self-luminous giant planets by direct imaging and spectroscopy. The next generation of 30m-40m ground-based
telescopes, the Extremely Large Telescopes (ELTs), have the potential to dramatically enlarge the discovery space
towards older giant planets seen in reflected light and ultimately even a small number of rocky planets. EPICS is a
proposed instrument for the European ELT, dedicated to the detection and characterization of Exoplanets by direct
imaging, spectroscopy and polarimetry. ESO completed a phase-A study for EPICS with a large European consortium
which - by simulations and demonstration experiments - investigated state-of-the-art diffraction and speckle suppression
techniques to deliver highest contrasts. The paper presents the instrument concept and analysis as well as its main
innovations and science capabilities. EPICS is capable of discovering hundreds of giant planets, and dozens of lower
mass planets down to the rocky planets domain.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
CODEX is the proposed ultra-stable optical high-resolution spectrograph for the E-ELT, which will use novel Laser
Comb calibration techniques and an innovative design to open a new era for precision spectroscopy. With its unique
combination of light-collecting power and precision, CODEX will make it possible to directly measure the acceleration
of the Universe by monitoring the cosmological redshift drift of spectroscopic features at cosmological distances.
CODEX will also allow the assembly of the first sizeable sample of earth-like planets in the habitable zones of their stars
with the radial velocity technique. CODEX will take this technique to the level of cm/sec radial velocity stability - a
factor of about 20 improvement compared to current instruments. These are two of the scientific results anticipated for
CODEX, which will be complemented by a wide range of spectacular science in stellar, galactic and extra-galactic
Astronomy as well as Fundamental Physics. All the critical technology items are available or (as for the Laser Frequency
Comb) are in an advanced state of testing. CODEX is located at the E-ELT coudé focus that will cover the visible range
from 370 to 710 nm and provide a resolving power R~120000 with an aperture of 0.8 arcseconds in the sky.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
METIS is the 'Mid-infrared ELT Imager and Spectrograph', the only planned thermal/mid-IR instrument for the E-ELT.
METIS will provide diffraction limited imaging in the atmospheric L/M and N-band from 3 - 14 μm over an 18"×18"
field of view (FOV). The imager also includes high contrast coronagraphy and low-resolution (900 ≤ R ≤ 5000) long slit
spectroscopy and polarimetry. In addition, an IFU fed, high resolution spectrograph at L/M band will provide a spectral
resolution of R ~ 100,000 over a 0.4"×1.5" FOV. The adaptive optics (AO) system is relatively simple, and METIS can
reach its full performance with the adaptive correction provided by the telescope - and occasionally even under seeing
limited conditions. On a 42m ELT, METIS will provide state-of-the-art mid-IR performance from the ground. The
science case for METIS is based on proto-planetary disks, characterization of exoplanets, formation of our Solar System,
growth of supermassive black holes, and the dynamics of high-z galaxies. With the focus on highest angular resolution
and highest spectral resolution, METIS is highly complementary to JWST and ALMA. This paper summarizes the
science case for METIS, and describes the instrument concept, performance and operational aspects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Infra-Red Imaging Spectrograph (IRIS) is one of the three first light instruments for the Thirty Meter Telescope
(TMT) and is the only one to directly sample the diffraction limit. The instrument consists of a parallel imager and offaxis
Integral Field Spectrograph (IFS) for optimum use of the near infrared (0.84um-2.4um) Adaptive Optics corrected
focal surface. We present an overview of the IRIS spectrograph that is designed to probe a range of scientific targets
from the dynamics and morphology of high-z galaxies to studying the atmospheres and surfaces of solar system objects,
the latter requiring a narrow field and high Strehl performance. The IRIS spectrograph is a hybrid system consisting of
two state of the art IFS technologies providing four plate scales (4mas, 9mas, 25mas, 50mas spaxel sizes). We present
the design of the unique hybrid system that combines the power of a lenslet spectrograph and image slicer spectrograph
in a configuration where major hardware is shared. The result is a powerful yet economical solution to what would
otherwise require two separate 30m-class instruments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the
European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared
Integral field spectrograph, provides the E-ELT's core spectroscopic requirement. It is a work-horse instrument,
with four different spatial scales, ranging from seeing to diffraction-limited, and spectral resolving powers of 4000,
10000 & 20000 covering the 0.47 to 2.45 μm wavelength range. It is optimally suited to carry out a wide range of
observing programs, focusing on detailed, spatially resolved studies of extended objects to unravel their morphology,
kinematics and chemical composition, whilst also enabling ultra-sensitive observations of point sources.
We present a synopsis of the key science cases motivating the instrument, the top level specifications, a description of
the opto-mechanical concept, operation and calibration plan, and image quality and throughput budgets. Issues of
expected performance, complementarity and synergies, as well as simulated observations are presented elsewhere in
these proceedings[1].
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
METIS: "Mid-infrared ELT Imager and Spectrograph" is the mid-infrared (3 - 14 microns) instrument for imaging and
spectroscopy for the European Extremely Large Telescope (E-ELT). To ensure high detection sensitivity the internal
radiation of the instrument needs to be eliminated (sufficiently reduced) and thus needs to be operated at cryogenic
temperatures.
The instrument is divided in a cold and warm system. The cold system, the actual heart of the system, is subdivided into
five main opto-mechanical modules located within a common cryostat (part of the warm system). The warm system
provides the crucial environment for the cold system, including the instrument control and maintenance equipment. The
end 2009 finished Phase-A study carried out within the framework of the ESO sponsored E-ELT instrumentation studies
has been performed by an international consortium with institutes from Netherlands (PI: Bernhard Brandl - NOVA),
Germany, France, United Kingdom and Belgium. During this conference various aspects of the METIS instrument
(design) are presented in several papers, including the instrument concept and science case, and the system engineering
and optical design.
This paper describes the design constraints and key issues regarding the packaging of this complex cryogenic instrument.
The design solutions to create a light, small and fully accessible instrument are discussed together with the specific
subdivision of the cold and warm system to ensure concurrent development at various different institutes around Europe.
In addition the paper addresses the design and development studies for the special, challenging units such as the large
optical image de-rotator, the (2D) chopper mechanism and the special cryogenic drives.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We are designing a sensitive high resolution (R=60,000-100,000) spectrograph for the Giant Magellan Telescope
(GMTNIRS, the GMT Near-Infrared Spectrograph). Using large-format IR arrays and silicon immersion gratings, this
instrument will cover all of the J (longer than 1.1 μm), H, and K atmospheric windows or all of the L and M windows in
a single exposure. GMTNIRS makes use of the GMT adaptive optics system for all bands. The small slits will offer the
possibility of spatially resolved spectroscopy as well as superior sensitivity and wavelength coverage. The GMTNIRS
team is composed of scientists and engineers at the University of Texas, the Korea Astronomy and Space Science
Institute, and Kyung Hee University. In this paper, we describe the optical and mechanical design of the instrument. The
principal innovative feature of the design is the use of silicon immersion gratings which are now being produced by our
team with sufficient quality to permit designs with high resolving power and broad instantaneous wavelength coverage
across the near-IR.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
OPTIMOS-EVE (OPTical Infrared Multi Object Spectrograph - Extreme Visual Explorer) is the fibre fed multi object
spectrograph proposed for the European Extremely Large Telescope (E-ELT), planned to be operational in 2018 at Cerro
Armazones (Chile). It is designed to provide a spectral resolution of 6000, 18000 or 30000, at wavelengths from 370 nm
to 1.7 μm, combined with a high multiplex (>200) and a large spectral coverage. Additionally medium and large IFUs
are available. The system consists of three main modules: a fibre positioning system, fibres and a spectrograph.
The recently finished OPTIMOS-EVE Phase-A study, carried out within the framework of the ESO E-ELT
instrumentation studies, has been performed by an international consortium consisting of institutes from France,
Netherlands, United Kingdom and Italy. All three main science themes of the E-ELT are covered by this instrument:
Planets and Stars; Stars and Galaxies; Galaxies and Cosmology.
This paper gives an overview of the OPTIMOS-EVE project, describing the science cases, top level requirements, the
overall technical concept and the project management approach. It includes a description of the consortium, highlights of
the science drivers and resulting science requirements, an overview of the instrument design and telescope interfaces, the
operational concept, expected performance, work breakdown and management structure for the construction of the
instrument, cost and schedule.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The detector for the ESPaDOnS spectrograph at the Canada-France-Hawaii Telescope (CFHT) is a CCD42-90 4.5kx2k
CCD from e2v Industries in a liquid nitrogen cooled GL Scientific cryostat. This paper describes the conversion of this
camera to closed-cycle cooling using a Polycold® cryogenic refrigeration system. Topics covered include vibration
analysis, positional stability of the image plane, cool-down characteristics, PLC integration, and annual operational
overheads for both systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The L/M-band Infrared Camera (LMIRcam) is a first-generation imager being constructed for the Large Binocular
Telescope Interferometer, operating at 3-5 μm. Given the high sky background at these wavelengths, an
FPGA-based controller provides high-speed, flexible data acquisition. Originally designed for FORCAST, a mid-
IR camera/spectrograph built by Cornell University, the controller was modified to interface with LMIRcam's
Teledyne HAWAII-1RG 1024×1024 array. In order to facilitate the different operating modes and increased array
size, we have developed a modified version of the FORCAST device driver, reconfigured the FPGAs, altered the
control software, and plan to implement a window mode.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The goal of the Dark Energy Survey (DES) is to measure the dark energy equation of state parameter with four
complementary techniques: galaxy cluster counts, weak lensing, angular power spectrum and type Ia supernovae. DES
will survey a 5000 sq. degrees area of the sky in five filter bands using a new 3 deg2 mosaic camera (DECam) mounted
at the prime focus of the Blanco 4-meter telescope at the Cerro-Tololo International Observatory (CTIO). DECam is a
~520 megapixel optical CCD camera that consists of 62 2k x 4k science sensors plus 4 2k x 2k sensors for guiding. The
CCDs, developed at the Lawrence Berkeley National Laboratory (LBNL) and packaged and tested at Fermilab, have
been selected to obtain images efficiently at long wavelengths. A front-end electronics system has been developed
specifically to perform the CCD readout. The system is based in Monsoon, an open source image acquisition system
designed by the National Optical Astronomy Observatory (NOAO). The electronics consists mainly of three types of
modules: Control, Acquisition and Clock boards. The system provides a total of 132 video channels, 396 bias levels and
around 1000 clock channels in order to readout the full mosaic at 250 kpixel/s speed with 10 e- noise performance.
System configuration and data acquisition is done by means of six 0.8 Gbps optical links. The production of the whole
system is currently underway. The contribution will focus on the testing, calibration and general performance of the full
system in a realistic environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Hyper Suprime-Cam (HSC) employs 116 of 2k×4k CCDs with 464 signal outputs in total. The image size
exceeds 2 GBytes, and the data can be readout every 10 seconds which results in the data rate of 210 Mbytes /
sec. The data is digitized to 16-bit. The readout noise of the electronics at the readout time of 20 seconds is
~0.9 ADU, and the one with CCD is ~1.5 ADU which corresponds to ~4.5 e. The linearity error fits within ±
0.5 % up to 150,000 e. The CCD readout electronics for HSC was newly developed based on the electronics
for Suprime-Cam. The frontend electronics (FEE) is placed in the vacuum dewar, and the backend electronics
(BEE) is mounted on the outside of the dewar on the prime focus unit. The FEE boards were designed to
minimize the outgas and to maximize the heat transfer efficiency to keep the vacuum of the dewar. The BEE
boards were designed to be simple and small as long as to achieve the readout time within 10 seconds. The
production of the system has been finished, and the full set of the boards are being tested with several CCDs
installed in the HSC dewar. We will show the system design, performance, and the current status of the
development.