Translator Disclaimer
Paper
13 October 2010 Using CEOS reference standard test sites to track the calibration stability of NOAA-19 AVHRR reflective solar channels
Author Affiliations +
Abstract
In recent years, there is an increasing interest to establish a global integrated network of calibration sites for the purpose of tracking sensor performance, conducting cross-sensor comparison and assessing data quality and consistency. Based on such a need, the Committee on Earth Observation Satellites (CEOS) proposed eight instrumented sites for which surface measurements can be acquired through field campaigns and five pseudo-invariant desert sites typically consisting of sand dunes. In this study, we select one site from each category to study the calibration stability of reflective solar channels of NOAA- 19 Advanced Very High Resolution Radiometer (AVHRR) (launched on February 6, 2009). Since AVHRR does not have an onboard calibrator for the reflective solar channels and vicarious calibration often needs long-term observations to derive reliable trends, this study will provide an early assessment of sensor on-orbit calibration performance and establish a preliminary trend to examine its calibration consistency with other sensors. The Antarctic Dome C site is selected primarily to monitor the on-orbit calibration performance whereas Libya 4 test site is used to evaluate the cross-calibration consistency of AVHRR with other sensors. A site-specific Bi-directional Reflectance Distribution Function (BRDF) model developed based on observations made by Moderate Resolution Imaging Spectroradiometer (MODIS) is used to normalize AVHRR observed Top-of-Atmosphere (TOA) reflectances. Impact due to calibration applied to NOAA-19 AVHRR L1B is assessed separately using a constant detector response. Results show that for NOAA-19 AVHRR solar channels 1 and 2, variations in reflectance during the first year after launch are still around 6% and more than 10%, respectively, either due to sensor change or improper adjustment of calibration coefficients. While two sites provide consistent trends for the visible channel, the Dome C site is more suitable for the near-infrared channel as impacts of the absorption by atmospheric water vapor are minimal.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Aisheng Wu, Amit Angal, Jack Xiong, and Changyong Cao "Using CEOS reference standard test sites to track the calibration stability of NOAA-19 AVHRR reflective solar channels", Proc. SPIE 7826, Sensors, Systems, and Next-Generation Satellites XIV, 782621 (13 October 2010); https://doi.org/10.1117/12.864601
PROCEEDINGS
10 PAGES


SHARE
Advertisement
Advertisement
Back to Top