You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 November 2010Different types of sideband generation in a passively mode-locked soliton fiber laser
We report on the experimental observation of sideband generation in a passively mode-locked erbium-doped fiber laser.
The fiber laser has a conventional ring-cavity configuration for passive mode locking based on nonlinear polarization
rotation. Self-starting and stable mode-locking operation is easily achieved in the laser. The output soliton pulses have a
duration of about 248 fs and a repetition rate of 13.7 MHz at 1565-nm wavelength. Detailed pulse dynamics of the laser
is measured under different operation conditions. Dip-type sidebands are observed on the soliton spectra of the laser,
which have clearly different characteristics to those of the conventional Kelly sidebands. The soliton operation of the
fiber laser is numerically simulated based on the coupled Ginzburg-Landau equations. The simulation results are
consistent with the experimental observations, which confirm that dip-type spectral sidebands can appear on the soliton
spectra of a uniform soliton-emission fiber laser.
The alert did not successfully save. Please try again later.
H. P. Li, Z. Jing, H. D. Xia, J. K. Liao, X. G. Tang, R. G. Lu, Y. Z. Liu, "Different types of sideband generation in a passively mode-locked soliton fiber laser," Proc. SPIE 7843, High-Power Lasers and Applications V, 784328 (16 November 2010); https://doi.org/10.1117/12.871862