27 January 2011 Hierarchical characterization procedures for dimensional metrology
Author Affiliations +
Abstract
We present a series of dimensional metrology procedures for evaluating the geometrical performance of a 3D imaging system that have either been designed or modified from existing procedures to ensure, where possible, statistical traceability of each characteristic value from the certified reference surface to the certifying laboratory. Because there are currently no internationally-accepted standards for characterizing 3D imaging systems, these procedures have been designed to avoid using characteristic values provided by the vendors of 3D imaging systems. For this paper, we focus only on characteristics related to geometric surface properties, dividing them into surface form precision and surface fit trueness. These characteristics have been selected to be familiar to operators of 3D imaging systems that use Geometrical Dimensioning and Tolerancing (GD&T). The procedures for generating characteristic values would form the basis of either a volumetric or application-specific analysis of the characteristic profile of a 3D imaging system. We use a hierarchical approach in which each procedure builds on either certified reference values or previously-generated characteristic values. Starting from one of three classes of surface forms, we demonstrate how procedures for quantifying for flatness, roundness, angularity, diameter error, angle error, sphere-spacing error, and unidirectional and bidirectional plane-spacing error are built upon each other. We demonstrate how these procedures can be used as part of a process for characterizing the geometrical performance of a 3D imaging system.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
David MacKinnon, Jean-Angelo Beraldin, Luc Cournoyer, Benjamin Carrier, "Hierarchical characterization procedures for dimensional metrology", Proc. SPIE 7864, Three-Dimensional Imaging, Interaction, and Measurement, 786402 (27 January 2011); doi: 10.1117/12.872124; https://doi.org/10.1117/12.872124
PROCEEDINGS
15 PAGES


SHARE
Back to Top