11 February 2011 Retinal imaging system with adaptive optics enhanced with pupil tracking
Author Affiliations +
Proceedings Volume 7885, Ophthalmic Technologies XXI; 788517 (2011) https://doi.org/10.1117/12.875460
Event: SPIE BiOS, 2011, San Francisco, California, United States
A compact retinal camera with adaptive optics which was designed for clinical practice was used to test a new adaptive optics control algorithm to correct for the angular ray deviations of a model eye. The new control algorithm is based on pupil movements rather than the measurement of the slopes of the wavefront with an optoelectronic sensor. The method for the control algorithm was based on the hypothesis that majority of the changes of the aberrations of the eye are due to head and eye movements and it is possible to correct for the aberrations of the eye by shifting the paraxial correction according to the new position of the pupil. Since the fixational eye movements are very small, the eye movements are assumed to be translational rather than rotational. Using the new control algorithm it was possible to simulate the aberrations of the moving model eye based on pupil tracking. The RMS of the residual wavefront error of the simulation had a magnitude similar to the RMS of the residual wavefront error of the adaptive optics correction based on optoelectronic sensor for angular ray deviations. If our hypothesis is true and other factors such as the tear film or the crystalline lens fluctuations do not cause changes in the aberrations of the eye as much as motion does, the method is expected to work in vivo as it did for a model eye which had no intrinsic factors that cause aberration changes.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Betul Sahin, Betul Sahin, Barbara Lamory, Barbara Lamory, Xavier Levecq, Xavier Levecq, Laurent Vabre, Laurent Vabre, Chris Dainty, Chris Dainty, } "Retinal imaging system with adaptive optics enhanced with pupil tracking", Proc. SPIE 7885, Ophthalmic Technologies XXI, 788517 (11 February 2011); doi: 10.1117/12.875460; https://doi.org/10.1117/12.875460

Back to Top