Front Matter: Volume 7903
Multiphoton Microscopy in the Biomedical Sciences XI

Ammasi Periasamy
Karsten König
Peter T. C. So
Editors

23–25 January 2011
San Francisco, California, United States

Sponsored and Published by
SPIE

Cosponsored by
Becker & Hickl GmbH (Germany)
Boston Electronics (United States)
Chroma Technology (United States)
Coherent, Inc. (United States)
JenLab GmbH (Germany)
Leica Microsystems (United States)
MultiPhoton Laser Technologies (United States)
Newport-Spectra Physics (United States)
Omega Optical (United States)
Semrock, Inc. (United States)

Volume 7903

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.
Contents

xiii Conference Committee

xv Introduction

xvii Acknowledgments

KEYNOTE SESSION

7903 05 New developments in multimodal clinical multiphoton tomography (Keynote Paper) [7903-03]
K. König, JenLab GmgH (Germany), Univ. of Saarland (Germany), and Beckman Laser Institute (United States)

SESSION 1 SECOND HARMONIC GENERATION I

7903 08 High-speed, label-free second harmonic generation holographic microscopy of biological specimens [7903-06]
P. Schlup, O. Masihzadeh, R. A. Bartels, Colorado State Univ. (United States)

7903 0B Elastic fibers and collagen distribution in human aorta [7903-09]
G. Vieira-Damiani, D. P. Ferro, R. L. Adam, A. A. de Thomaz, V. Pelegati, C. L. Cesar, K. Metze, Univ. Estadual de Campinas (Brazil)

SESSION 2 SECOND HARMONIC GENERATION II

7903 0E Second harmonic generation imaging of collagen matrix remodeling in a stimulated 3D cellular environment: forward versus backward detection [7903-12]
T. Abraham, A. Scott, J. Carthy, B. McManus, The Univ. of British Columbia (Canada)

7903 0F 3D myofibril imaging in live cardiomyocytes via hybrid SHG-TPEF microscopy [7903-13]
Y. Shao, Shenzhen Univ. (China); H. Liu, Clemson Univ. (United States); T. Ye, Univ. of Alabama at Birmingham (United States); T. Borg, Medical Univ. of South Carolina (United States); J. Qu, X. Peng, H. Niu, Shenzhen Univ. (China); B. Gao, Clemson Univ. (United States)

7903 0G Second harmonic phase microscopy of collagen fibers [7903-14]
E. Shaffer, Ecole Polytechnique Fédérale de Lausanne (Switzerland); P. Marquet, Ecole Polytechnique Fédérale de Lausanne (Switzerland) and Ctr. Hospitalier Univ. Vaudois (Switzerland); C. Depeursinge, Ecole Polytechnique Fédérale de Lausanne (Switzerland)

7903 0H Three-dimensional polarization second harmonic generation (3D-PSHG) imaging: the effect of the tilted-off the plane SHG active structures [7903-15]
S. Psilodimitrakopoulos, I. Amat-Roldan, ICFO - Instituto de Ciències Fotòniques (Spain); D. Artigas, ICFO - Instituto de Ciències Fotònicas (Spain) and Univ. Politécnica de Catalunya (Spain); P. Loza-Alvarez, ICFO - Instituto de Ciències Fotònicas (Spain)
SESSION 3 TECHNOLOGY DEVELOPMENT AND APPLICATIONS I

7903 0I Dependence of third-harmonic generation on melanin concentration in solution [7903-16]
T.-Y. Su, C.-S. Liao, C.-Y. Yang, Z.-Y. Zhuo, S.-Y. Chen, S.-W. Chu, National Taiwan Univ. (Taiwan)

7903 0J Quantitative analysis of diseased horse tendons using Fourier-transform-second-harmonic generation imaging [7903-17]
M. Sivaguru, S. Durgam, R. Ambekar, D. Luedtke, G. Fried, A. Stewart, K. C. Toussaint, Jr., Univ. of Illinois at Urbana-Champaign (United States)

SESSION 4 RAMAN/CARS MICROSCOPY I

7903 0P Intensity normalization of two-photon microscopy images for liver fibrosis analysis [7903-22]
V. R. Singh, Singapore-MIT Alliance for Research and Technology (Singapore); J. C. Rajapakse, Singapore-MIT Alliance for Research and Technology (Singapore) and Nanyang Technological Univ. (Singapore); H. Yu, Singapore-MIT Alliance for Research and Technology (Singapore), A*STAR (Singapore), and National Univ. of Singapore (Singapore); P. T. C. So, Singapore-MIT Alliance for Research and Technology (Singapore) and Massachusetts Institute of Technology (United States);

7903 0Q Combined two-photon microscopy and optical coherence tomography using individually optimized sources [7903-116]
B. Jeong, B. Lee, M. S. Jang, H. Nam, H. K. Kim, S. J. Yoon, J. Doh, S.-J. Lee, B.-G. Yang, Pohang Univ. of Science and Technology (Korea, Republic of); M. H. Jang, Pohang Univ. of Science and Technology (Korea, Republic of) and Osaka Univ. (Japan); K. H. Kim, Pohang Univ. of Science and Technology (Korea, Republic of)

SESSION 5 RAMAN/CARS MICROSCOPY II

7903 0S Chemical release from single-PMMA microparticles monitored by CARS microscopy [7903-24]
A. Enejder, F. Svedberg, L. Nordstierna, M. Nydén, Chalmers Univ. of Technology (Sweden)

7903 0W High power picosecond fiber lasers for Raman microscopies (Invited Paper) [7903-28]
S. Lefrancois, L. Kong, D. Ouzounov, F. Wise, Cornell Univ. (United States); C. Yang, Tsinghua Univ. (China)

7903 0X All fiber 1064-nm time-lens source for coherent anti-Stokes Raman scattering and stimulated Raman scattering microscopy (Invited Paper) [7903-29]
K. Wang, Cornell Univ. (United States); C. W. Freudiger, Harvard Univ. (United States); J. H. Lee, Cornell Univ. (United States); B. G. Saar, X. S. Xie, Harvard Univ. (United States); C. Xu, Cornell Univ. (United States)

7903 0Y Coherent anti-Stokes Raman scattering microspectroscopy based on a compact Er: fiber laser [7903-30]
R. Seilm, M. Winterhalder, A. Nagy, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, A. Leitenstorfer, Univ. of Konstanz (Germany)
SESSION 6 RAMAN/CARS MICROSCOPY III

7903 15 Integrated multiplex CARS and two-photon fluorescence microscopy for imaging biological systems [7903-37]
D. Li, W. Zheng, J. Y. Qu, Hong Kong Univ. of Science and Technology (Hong Kong, China)

7903 18 Using multimodal femtosecond CARS imaging to determine plaque burden in luminal atherosclerosis [7903-40]

7903 19 Nonlinear microscopy and infrared and Raman microspectroscopy for brain tumor analysis [7903-41]
C. Krafft, Institute of Photonic Technology (Germany); B. Dietzek, Institute of Photonic Technology (Germany) and Friedrich-Schiller-Univ. Jena (Germany); T. Meyer, N. Bergner, Institute of Photonic Technology (Germany); B. F. M. Romeike, R. Reichart, R. Kalff, Univ. Medical Ctr. Jena (Germany); J. Popp, Institute of Photonic Technology (Germany) and Friedrich-Schiller-Univ. Jena (Germany)

7903 1A Combining multiphoton and CARS microscopy for skin imaging [7903-42]
H. G. Breunig, M. Weinigel, JenLab GmbH (Germany); J. Lademann, W. Sterry, Charité (Germany); I. Latka, B. Dietzek, J. Popp, IPHT, Univ. of Jena (Germany); K. König, JenLab GmbH (Germany) and Saarland Univ. (Germany)

SESSION 7 RAMAN/CARS MICROSCOPY IV

7903 1B Coherent anti-Stokes Raman scattering imaging through turbid medium [7903-43]
R. Arora, G. I. Petrov, V. V. Yakovlev, Univ. of Wisconsin-Milwaukee (United States)

7903 1C A CARS solution with high temporal resolution [7903-44]
S. Landwehr, V. Lurquin, W. C. Hay, V. Krishnamachari, U. Schwarz, Leica Microsystems CMS GmbH (Germany)

7903 1D Development of a micromirror-scanned multimodal CARS miniaturized microscope for the in vivo study of spinal cord disorders [7903-45]
S. Murugkar, B. Smith, M. Naji, Univ. of Ottawa (Canada); C. Brideau, P. Stys, Univ. of Calgary (Canada); H. Anis, Univ. of Ottawa (Canada)

7903 1E Development of polarization-mode controllable CARS microscope [7903-46]
M. Hashimoto, T. Takagi, T. Minamikawa, H. Niioka, T. Araki, Osaka Univ. (Japan)
High contrast coherent anti-Stokes Raman scattering microscopy using tightly focused cylindrical vector beams [7903-47]
J. Lin, F. Lu, W. Zheng, Z. Huang, National Univ. of Singapore (Singapore)

Multiparameter label-free flow cytometry using multiplex coherent anti-Stokes Raman scattering (MCARS) with biological applications [7903-48]
C. H. Camp, Jr., S. Yegnanarayanan, A. A. Eftekhar, A. Adibi, Georgia Institute of Technology (United States)

Differential CARS microscopy with linearly chirped femtosecond laser pulses [7903-50]
W. Langbein, I. Rocha-Mendoza, F. Masia, C. Di Napoli, I. Pope, P. Watson, P. Borri, Cardiff Univ. (United Kingdom)

Sub-100nm material processing with sub-15 femtosecond picojoule near infrared laser pulses (Invited Paper) [7903-54]
K. König, Saarland Univ. (Germany) and Univ. of California, Irvine (United States); A. Uchugonova, M. Straub, H. Zhang, M. Afshar, D. Feili, H. Seidel, Saarland Univ. (Germany)

Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses (Invited Paper) [7903-55]
A. Uchugonova, Univ. des Saarlandes (Germany) and Univ. of California, San Diego (United States); H. Zhang, Univ. des Saarlandes (Germany); C. Lemke, Univ. of Jena (Germany); K. König, Univ. des Saarlandes (Germany) and Beckman Laser Institute (United States)

Wide-field two-photon microscopy with temporal focusing and HiLo background rejection [7903-56]
E. Y. S. Yew, Singapore-MIT Alliance for Research and Technology (Singapore); H. Choi, D. Kim, Massachusetts Institute of Technology (United States); P. T. C. So, Singapore-MIT Alliance for Research and Technology (Singapore) and Massachusetts Institute of Technology (United States)

Two-photon autofluorescence spectroscopy of oral mucosa tissue [7903-58]
K. Edward, T. Shilagard, S. Qiu, G. Vargas, The Univ. of Texas Medical Branch (United States)

Single-wavelength STED microscope [7903-59]
S. C. Baer, Consultant (United States)

Multimodal nonlinear optical imaging of obesity-induced liver steatosis and fibrosis [7903-63]
J. Lin, F. Lu, W. Zheng, National Univ. of Singapore (Singapore); D. C. S. Tai, Institute of Bioengineering and Nanotechnology (Singapore); H. Yu, Institute of Bioengineering and Nanotechnology (Singapore) and National Univ. of Singapore (Singapore); C. Sheppard, Z. Huang, National Univ. of Singapore (Singapore)
Time-resolved fluorescence microscopy to study biologically related applications using sol-gel derived and cellular media [7903-64]
M. Toury, HORIBA Jobin Yvon IBH Ltd. (United Kingdom); L. Chandler, HORIBA Scientific, Inc. (United States); A. Allison, D. Campbell, D. McLoskey, HORIBA Jobin Yvon IBH Ltd. (United Kingdom); A. S. Holmes-Smith, Glasgow Caledonian Univ. (United Kingdom); G. Hungerford, HORIBA Jobin Yvon IBH Ltd. (United Kingdom)

Enhanced eumelanin emission by stepwise three-photon excitation [7903-65]
J. Kerimo, Northeastern Univ. (United States); M. Rajadhyaksha, Memorial Sloan-Kettering Cancer Ctr. (United States); C. A. DiMarzio, Northeastern Univ. (United States)

SESSION 10 FLIM, FRET, FCS MICROSCOPY I

Simultaneous fluorescence and phosphorescence lifetime imaging (Invited Paper) [7903-68]
W. Becker, B. Su, A. Bergmann, Becker & Hickl GmbH (Germany); K. Weisshart, O. Holub, Carl Zeiss MicrImaging GmbH (Germany)

Multiwavelength FLIM: new applications and algorithms (Invited Paper) [7903-69]
A. Rück, D. Strat, F. Dolp, Institute for Laser Technologies in Medicine and Metrology (Germany); B. von Einem, C. A. F. von Arnim, Univ. Ulm (Germany)

Determination of calcium concentrations in cells and tissue with fluorescence lifetime imaging: (FLIM) [7903-71]
T. Gensch, Forschungszentrum Jülich GmbH (Germany); M. Wirth, RWTH Aachen (Germany)

Mapping intracellular viscosity by advanced fluorescence imaging of molecular rotors in living cells [7903-72]
P.-H. Chung, J. A. Levitt, King's College London (United Kingdom); M. K. Kuimova, Imperial College London (United Kingdom); G. Yahioglu, Imperial College London (United Kingdom) and PhotoBiotics Ltd. (United Kingdom); K. Suhling, King's College London (United Kingdom)

Determination of the stoichiometry, structure, and distribution in living cells of protein complexes from analysis of single-molecular-complexes FRET [7903-73]
M. R. Stoneman, S. Patowary, M. T. Roesch, D. R. Singh, V. Strogolov, J. A. Oliver, V. Raicu, Univ. of Wisconsin-Milwaukee (United States)

Bayesian analysis of fluorescence lifetime imaging data [7903-74]
M. I. Rowley, King's College London (United Kingdom); P. R. Barber, King's College London (United Kingdom) and Univ. of Oxford (United Kingdom); A. C. C. Coolen, King's College London (United Kingdom); B. Vojnovic, King's College London (United Kingdom) and Univ. of Oxford (United Kingdom)

SESSION 11 FLIM, FRET, FCS MICROSCOPY II

Laser-induced photobleaching of NAD(P)H fluorescence components in cardiac cells resolved by linear unmixing of TCSPC signals (Invited Paper) [7903-75]
A. Chorvatova, A. Mateasik, D. Chorvat, Jr., International Laser Ctr. (Slovakia)
7903 28 Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer [7903-77]
S. Ernst, Univ. of Stuttgart (Germany); B. Verhalen, Upstate Medical Univ. (United States);
N. Zarabi, Univ. of Stuttgart (Germany); S. Wilkens, Upstate Medical Univ. (United States);
M. Börsch, Univ. of Stuttgart (Germany)

7903 29 Measuring the diffusion of fluorophores in human skin by two-photon fluorescence correlation spectroscopy combined with measurements of point spread function [7903-78]
S. Guldbrand, C. Simonsson, M. Goksör, M. Smedh, M. B. Ericson, Univ. of Gothenburg (Sweden)

7903 2A Two-photon phosphorescence lifetime microscopy (2PLM) for high resolution imaging of oxygen [7903-79]
L. E. Sinks, E. Roussakis, Univ. of Pennsylvania (United States); S. Sakadžić, Massachusetts General Hospital (United States); G. P. Robbins, D. A. Hammer, Univ. of Pennsylvania (United States); A. Devor, Univ. of California, San Diego (United States); D. A. Boas, Massachusetts General Hospital (United States); S. A. Vinogradov, Univ. of Pennsylvania (United States)

7903 2B A multispectral FLIM tomograph for in-vivo imaging of skin cancer [7903-80]
C. B. Talbot, R. Patalay, I. Munro, Imperial College London (United Kingdom); H. G. Breunig, K. König, JenLab GmbH (Germany); Y. Alexandrov, S. Warren, Imperial College London (United Kingdom); A. Chu, Imperial College Healthcare NHS Trust (United Kingdom); G. W. Stamp, The Royal Marsden Hospital NHS Trust (United Kingdom); M. A. A. Neil, P. M. W. French, C. Dunsby, Imperial College London (United Kingdom)

7903 2C Using adaptive optics for deep in-vivo multiphoton FLIM [7903-81]
S. Poland, G. Fruhwirth, T. Ng, S. Ameer-beg, King's College London (United Kingdom)

7903 2D A STED-FLIM microscope applied to imaging the natural killer cell immune synapse [7903-82]
M. O. Lenz, A. C. N. Brown, E. Auksoirius, D. M. Davis, C. Dunsby, M. A. A. Neil, P. M. W. French, Imperial College London (United Kingdom)

7903 2E The HIV-1 Gag precursor induces the recruitment of Vpr oligomers to the plasma membrane as revealed by time-resolved fluorescence imaging [7903-83]
H. de Rocquigny, D. Dujardin, T. Steffan, P. Didier, Y. Mély, Lab. de Biophotonique et Pharmacologie, CNRS, Univ. de Strasbourg (France)

POSTER SESSION

7903 2G Label-free imaging of human breast tissues using coherent anti-Stokes Raman scattering microscopy [7903-85]
Y. Yang, The Methodist Hospital Research Institute (United States); L. Gao, The Methodist Hospital Research Institute (United States) and Rice Univ. (United States); Z. Wang, The Methodist Hospital Research Institute (United States); M. J. Thrall, The Methodist Hospital (United States); P. Luo, The Methodist Hospital Research Institute (USA); K. K. Wong, The Methodist Hospital Research Institute (United States) and The Methodist Hospital (United States); S. T. C. Wong, The Methodist Hospital Research Institute (United States), The Methodist Hospital (United States), and Rice Univ. (United States)
2H Photo-induced cell damage analysis for multi-focus CARS microscopy [7903-86]
T. Minamikawa, Y. Murakami, N. Matsumura, H. Nioka, S. Fukushima, T. Araki, M. Hashimoto,
Osaka Univ. (Japan)

2I Raman spectroscopy: a powerful tool for the non-contact discrimination of bone marrow
mesenchymal stem cells and fibroblasts [7903-87]
M. Pudlas, S. Koch, Fraunhofer IGB (Germany) and Univ. of Stuttgart (Germany); C. Bolwien,
Fraunhofer IPM (Germany); T. Hirth, Fraunhofer IGB (Germany) and Univ. of Stuttgart
(Germany); H. Walles, Fraunhofer IGB (Germany) and Julius-Maximillians Univ. Würzburg
(Germany); K. Schenke-Layland, Fraunhofer IGB (Germany)

2J Broadband coherent Raman imaging for multiplexed detection [7903-88]
B. Littleton, F. Festy, S. Ameer-Beg, D. Richards, King's College London (United Kingdom)

2L A femtosecond stimulated Raman loss (FSRL) microscope for highly sensitive bond-selective
imaging [7903-90]
D. Zhang, M. N. Slipchenko, S. Yue, J. Li, J.-X. Cheng, Purdue Univ. (United States)

2P Multiphoton endoscopy based on a mode-filtered single-mode fiber [7903-95]
S. Moon, G. Liu, Beckman Laser Institute (United States); Z. Chen, Beckman Laser Institute
(United States) and Univ. of California, Irvine (United States)

2S Novel nanocarriers for topical drug delivery: investigating delivery efficiency and
distribution in skin using two-photon microscopy [7903-98]
V. Kirejev, S. Guldbrand, B. Bauer, M. Smedh, M. B. Ericson, Univ. of Gothenburg (Sweden)

2T Compact ultrafast semiconductor disk laser for nonlinear imaging in living organisms
[7903-99]
R. Aviles-Espinosa, ICFO - Instituto de Ciencias Fotónicas (Spain); G. Filippidis, Foundation for
Research and Technology-Hellas (Greece); C. Hamilton, Solus Technologies Ltd.
(United Kingdom) and M Squared Lasers Ltd (United Kingdom); G. Malcolm, M Squared
Lasers Ltd. (United Kingdom); K. J. Weingarten, Time-Bandwidth-Products (Switzerland);
T. Südmeyer, Y. Barbarin, U. Keller, ETH Zurich (Switzerland); D. Artigas, ICFO - Instituto de
Ciencias Fotónicas (Spain) and Univ. Politécnica de Catalunya (Spain); P. Loza-Alvarez,
ICFO - Instituto de Ciencias Fotónicas (Spain)

2V Two-photon excitation STED-CW microscopy [7903-101]
P. Bianchini, Italian Institute of Technology (Italy) and Univ. of Genoa (Italy); B. Harke, Italian
Institute of Technology (Italy); S. Galiani, A. Diaspro, Italian Institute of Technology (Italy) and
Univ. of Genoa (Italy)

2W Two-photon fluorescence excitation within a light sheet based microscopy architecture
(Best Poster Award) [7903-102]
F. Cella Zanacchi, Italian Institute of Technology (Italy) and Univ. of Genoa (Italy); Z.
Lavagnino, M. Pesce, F. Difato, Italian Institute of Technology (Italy); E. Ronzitti, Univ. of
Genoa (Italy); A. Diaspro, Italian Institute of Technology (Italy) and Univ. of Genoa (Italy)
Characterization of third-degree burned skin by nonlinear microscopy technique [7903-104]
M. O. dos Santos, Instituto de Pesquisas Energéticas e Nucleares (Brazil); V. B. Pelegati, C. L. Cesar, Univ. Estadual de Campinas (Brazil); P. R. Correa, Instituto de Pesquisas Energéticas e Nucleares (Brazil); T. M. T. Zorn, Univ. de São Paulo (Brazil); D. M. Zezell, Instituto de Pesquisas Energéticas e Nucleares (Brazil)

Diagnosing hepatocellular carcinoma with the intensity and the lifetime of two-photon red autofluorescences [7903-105]
T.-M. Liu, C.-T. Hsieh, Y.-S. Chen, F.-L. Huang, National Taiwan Univ. (Taiwan); H.-Y. Huang, W.-J. Lee, National Taiwan Univ. Hospital (Taiwan); C.-T. Kung, C.-K. Sun, National Taiwan Univ. (Taiwan)

Fast algorithms for the analysis of spectral FLIM data [7903-106]
I. Gregor, Georg-August-Univ. (Germany); B. Krämer, F. Koberling, R. Erdmann, PicoQuant GmbH (Germany); J. Enderlein, Georg-August-Univ. (Germany); M. Wahl, PicoQuant GmbH (Germany); S. Fore, PicoQuant Photonics North America, Inc. (United States)

Proposal of a new method to measure FRET quantitatively in living or fixed biomedical specimens on a laser microscope [7903-107]
P. J. Helm, O. P. Ottersen, Univ. of Oslo (Norway)

The increase of NADH fluorescence lifetime is associated with the metabolic change during osteogenic differentiation of human mesenchymal stem cells (hMSCs) (Best Poster Award) [7903-110]
H. W. Guo, J. S. Yu, S. H. Hsu, National Yang-Ming Univ. (Taiwan); Y. H. Wei, National Yang-Ming Univ. (Taiwan) and Mackay Medical College (Taiwan); O. K. Lee, H. W. Wang, National Yang-Ming Univ. (Taiwan)

Visualization of heat propagation in biological tissues with two-photon fluorescence microscopy (Best Poster Award) [7903-115]
C.-Y. Yang, C.-S. Liao, Y.-Y. Tzeng, S.-W. Chu, National Taiwan Univ. (Taiwan)

Two-photon excitation in life sciences: neurotransmitter and fluorescence uncaging [7903-117]
F. Bolze, J.-F. Nicoud, Lab. de Biphosphonic et Pharmacologie, CNRS, Univ. de Strasbourg (France); S. Gug, S. Charon, Lab. de Biphosphonic et Pharmacologie, CNRS, Univ. de Strasbourg (France) and Lab. de Conception et Application de Molécules Bioactives, CNRS, Univ. de Strasbourg (France); A. Specht, M. Goeldner, D. Warther, Lab. de Conception et Application de Molécules Bioactives, CNRS, Univ. de Strasbourg (France); X.-H. Sun, Lab. de Biphosphonic et Pharmacologie, CNRS, Univ. de Strasbourg (France); P. Kessler, Y. Lutz, J.-L. Vonesch, Institut de Genetique et Biologie Moleculaire et Cellulaire (France); A. Losonczy, Columbia Univ. (United States)

Extracting quantitative biomechanical parameters for cartilage from second harmonic generation images [7903-119]
M. B. Lilledahl, Norwegian Univ. of Science and Technology (Norway); D. M. Pierce, Graz Univ. of Technology (Austria); T. Ricken, Univ. of Duisburg-Essen (Germany); G. A. Holzapfel, Graz Univ. of Technology (Austria) and Royal Institute of Technology (Sweden); C. de Lange Davies, Univ. of Duisburg-Essen (Germany)
Delivery and characterization of sub-8fs laser pulses at the imaging plane of a two-photon microscope [7903-120]
D. Pestov, B. Xu, H. Li, Biophotonic Solutions, Inc. (United States); M. Dantus, Biophotonic Solutions, Inc. (United States) and Michigan State Univ. (United States)

Author Index
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard School of Medicine (United States)

Program Track Chairs

Ammasi Periasamy, University of Virginia (United States)
Daniel L. Farkas, Cedars-Sinai Medical Center (United States)

Conference Chairs

Ammasi Periasamy, University of Virginia (United States)
Karsten König, JenLab GmbH (Germany)
Peter T. C. So, Massachusetts Institute of Technology (United States)

Program Committee

Wolfgang Becker, Becker & Hickl GmbH (Germany)
Keith M. Berland, Emory University (United States)
Guy C. Cox, The University of Sydney (Australia)
Alberto Diaspro, Università degli Studi di Genova (Italy)
Chen-Yuan Dong, National Taiwan University (Taiwan)
Dennis Donley, Olympus America, Inc. (United States)
Kevin W. Elceiri, University of Wisconsin-Madison (United States)
Scott E. Fraser, California Institute of Technology (United States)
Paul M. W. French, Imperial College London (United Kingdom)
Hans C. Gerritsen, Utrecht Universiteit (Netherlands)
Min Gu, Swinburne University of Technology (Australia)
Stefan W. Hell, Max-Planck-Institut für biophysikalische Chemie (Germany)
Brian A. Herman, The University of Texas Health Science Center at San Antonio (United States)
Satoshi Kawata, Osaka University (Japan)
Arnd K. Krueger, Newport Spectra-Physics (United States)
Joseph R. Lakowicz, University of Maryland School of Medicine (United States)
Stephen M. McDonald, Coherent, Inc. (United States)
Simon C. Watkins, University of Pittsburgh (United States)
Paul W. Wiseman, McGill University (Canada)
Sunney X. Xie, Harvard University (United States)
Bernhard Zimmermann, Carl Zeiss Jena GmbH (Germany)
Warren R. Zipfel, Cornell University (United States)

Session Chairs

Keynote Session
Ammasi Periasamy, University of Virginia (United States)

1 Second Harmonic Generation I
Paul J. Campagnola, University of Wisconsin-Madison (United States)

2 Second Harmonic Generation II
Chen-Yuan Dong, National Taiwan University (Taiwan)

3 Technology Development and Applications I
Francesco S. Pavone, Università degli Studi di Firenze (Italy)

4 Raman/CARS Microscopy I
Sunney X. Xie, Harvard University (United States)

5 Raman/CARS Microscopy II
Eric O. Potma, University of California, Irvine (United States)

6 Raman/CARS Microscopy III
Ji-Xin Cheng, Purdue University (United States)

7 Raman/CARS Microscopy IV
Annika M. Enejder, Chalmers University of Technology (Sweden)

8 Technology Development and Applications II
Peter T. C. So, Massachusetts Institute of Technology (United States)

9 Technology Development and Applications III
Paolo Bianchini, Istituto Italiano di Tecnologia (Italy)

10 FLIM, FRET, FCS Microscopy I
Alzbeta Chorvatova, International Laser Center (Slovakia)

11 FLIM, FRET, FCS Microscopy II
Karsten König, JenLab GmbH (Germany)

Poster Session
Holly L. Aaron, University of California, Berkeley (United States)
Aisada A. Uchugonova, Universität des Saarlandes (Germany)
Vladimir Ghukasyan, University of North Carolina Chapel Hill (United States)
Christian W. Freudiger, Harvard University (United States)
Introduction

We started this conference in 2001 and for a few years the total number of abstracts on the average was about 45. As we enter into the 11th year of the conference, the abstract total numbers grown to 120. This is possible because of various factors including great interest in the multi-photon excitation fluorescence microscopy, technology advances in lasers, optics and support and encouragement from various sponsors (vendors) of the conference, and more importantly transformation of the multiphoton technology from bench to bed.

The multiphoton microscopy has been established as the 3-D imaging method of choice for studying biomedical specimens from single cells to whole animals with sub-micron resolution. Two decades have past since the realization of two-photon microscopy, and the ever-expanding scope of applications and the continuing instrumental innovations require a forum where new ideas can be exchanged and presented. Our conference in the SPIE BIOS2011 meeting continues to address this need. In this year, the conference enjoys the participation of four keynote presentations from leaders of our field including Professors Paras Prasad, Watt Webb, Colin Sheppard, and Karsten König. It is a particular pleasure to have Professor Webb returning to the conference who has given one of the first keynote talks of this conference.

These proceedings allows the presenters to provide a more in-depth discussion of their subject. Some of the most valuable contributions in this volume are articles written by highly experienced practitioners of multi-photon microscopy. They have enumerated the most important considerations in designing multi-photon microscopes and the imaging experiments. Further, updates on the state-of-the-art commercial multi-photon microscope systems are presented. This volume also includes articles describing some recent advances in major multi-photon microscope components such as the laser light source and the ultra-fast optics.

While the basic physical principles underlying multi-photon microscopy are well understood, the application of this method to biological systems has its unique challenges in biomedical optics and photophysics. Work in this area includes the characterization of the two-photon point spread function in turbid medium and development of new methods to quantify two-photon cross sections in chromophores. Realizing that the incorporation of spectroscopy techniques is critical for extracting quantitative information from specimens, a number of novel spectroscopy techniques based on multi-photon microscopy have been developed. New multi-photon methods have incorporated novel contrast mechanisms such as SRS and CARS, quantitative emission spectroscopy, fluorescence resonance energy transfer, fluorescence correlation spectroscopy and second and third harmonic generation microscopy for acquisition of dynamic information in biological systems.
A number of presentations in this conference have demonstrated that multi-photon imaging is a promising method for single molecular spectroscopy investigations. Single molecular studies using multi-photon fluorescence correlation spectroscopy techniques were presented. Multi-photon imaging methods based on second and third harmonic generation were described. In addition to the development in instrumentation and optics, this volume also contains a number of exciting articles on the use of two-photon microscopy in cell biological studies. Particularly important areas including FRET and FLIM imaging. Many papers were presented on the use of multi-photon microscopy for the study of tissue physiology and pathology utilizing the long tissue penetration depth of this technique with major impact on many subfields of medicine. Finally, the impact of multiphoton imaging on biotechnology also cannot be underestimated.

A series of excellent papers in this proceeding over the past decade is a sign of the vitality in the multi-photon microscopy field. We have deliberately avoided mentioning any author by name because we believe that it would be inappropriate for us to direct the readers to any particular paper(s). As the field progress, controversies and conflicts among researchers in this field are unavoidable. We believe that this series of proceeding papers should serve as a forum where the authors can voice controversial opinions. Unlike archival journal papers, the editors of this proceeding series intentionally leave in controversial papers. It should be noted that the publication of these papers in this proceeding do not imply the scientific approval of the editors or SPIE as an organization. Further, we believe that this series should serve as a forum for civilized scientific ideas of exchange in various technology development and applications. The editors reserve the right to reject any paper without a primary goal of disseminating scientific or engineering knowledge or that is deem to breach the necessary civility.

On a personal note, the conference chairs are grateful for the participation of all authors, and acknowledge the vendors (Becker & Hickl GmbH, Boston Electronics, Chroma Technology, Coherent, Jen Lab GmbH, Leica Microsystems, MultiPhoton Laser Technologies, Newport-Spectra Physics, Omega Optical, and Semrock) for their enthusiastic support in organizing this conference successfully for the last 11 years. We look forward to other exciting conferences in the second decade and welcome your continued participation and support.

Ammasi Periasamy
Karsten König
Peter T. C. So
Acknowledgments

www.multiphotonlasertechnologies.com

www.omegafilters.com

www.jenlab.de

www.coherent.com

www.newport.com

Becker & Hickl GmbH
www.becker-hickl.com

www.leica-microsystems.com

www.chroma.com

www.boselec.com

www.semrock.com