Translator Disclaimer
1 March 2011 Experimental analysis of the effects of atmospheric turbulence on a 29-km free-space laser communication link
Author Affiliations +
Laser beams propagating through the atmosphere are affected by optical turbulence, whose static and dynamic properties can be characterized by spatial and temporal fields of the refractive index. The resulting wave front distortions lead to performance degradation in the form of reduced signal power and increased bit-error-rates (BER), even in short links; however, it is impossible to obtain closed-form solutions for instantaneous realizations of these distortions and all the subsequent events. Instead, the statistical properties of the refractive index fluctuations can be studied using one of the well-known spectral models and extended further into the scintillation analysis and analysis of communication performance. From a practical stand point, it would be very advantageous to relate the expected system performance to specific factors responsible for wave front distortions, which are typically linked to some weather variables, such as the air temperature, pressure, wind speed, etc. In this paper, we present the results of a detailed experimental study, where some of these relationships are mathematically justified based on the tests conducted over a period of several months. The measurement data was obtained using a 29-km free-space laser communication link established between two fixed-point terminals and operating at a wavelength of 1550 nm.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Vladimir Nikulin, John Malowicki, Vijit Bedi, David Hughes, and Herbert Bloss "Experimental analysis of the effects of atmospheric turbulence on a 29-km free-space laser communication link", Proc. SPIE 7923, Free-Space Laser Communication Technologies XXIII, 79230P (1 March 2011);

Back to Top