You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 February 2011Nb5N6 bolometer operated at room temperature for detecting at 100 GHz
Onto a double layer, which is made of a Si substrate ( ρ> 1000 Ω·cm ) and a SiO2 layer 100 nm thick
on top of it, a Nb5N6 thin film microbridge is deposited and integrated with an aluminum bow-tie
planar antenna. With a SiO2 air-bridge further fabricated underneath the microbridge and operated
at room temperature, such a combination behaves very well as a bolometer for detecting signals at
100 GHz, thanks to a temperature coefficient of resistance (TCR) as high as -0.7% K-1 of the Nb5N6 thin film. According to our estimations, the best attainable electrical responsivity of the bolometer is
about -400 V/W at a current bias of 0.4 mA. The electrical noise equivalent power (NEP) is 6.9x10-11 W/Hz1/2 for a modulation frequency at 300 Hz and 9.8x10-12 W/Hz1/2 for a modulation frequency
above 10 kHz respectively, which are better than those of commercial products (such as Golay cell
and Schottky diode detectors). A quasi-optical receiver based on such a bolometer is constructed and
measured.
The alert did not successfully save. Please try again later.
L. Kang, X. H. Lu, J. Chen, C. H. Cao, W. W. Xu, B. B. Jin, P. H. Wu, Q. J. Yao, S. C. Shi, "Nb5N6 bolometer operated at room temperature for detecting at 100 GHz," Proc. SPIE 7938, Terahertz Technology and Applications IV, 79380F (23 February 2011); https://doi.org/10.1117/12.874578