9 March 2011 Colonoscopy video quality assessment using hidden Markov random fields
Author Affiliations +
Abstract
With colonoscopy becoming a common procedure for individuals aged 50 or more who are at risk of developing colorectal cancer (CRC), colon video data is being accumulated at an ever increasing rate. However, the clinically valuable information contained in these videos is not being maximally exploited to improve patient care and accelerate the development of new screening methods. One of the well-known difficulties in colonoscopy video analysis is the abundance of frames with no diagnostic information. Approximately 40% - 50% of the frames in a colonoscopy video are contaminated by noise, acquisition errors, glare, blur, and uneven illumination. Therefore, filtering out low quality frames containing no diagnostic information can significantly improve the efficiency of colonoscopy video analysis. To address this challenge, we present a quality assessment algorithm to detect and remove low quality, uninformative frames. The goal of our algorithm is to discard low quality frames while retaining all diagnostically relevant information. Our algorithm is based on a hidden Markov model (HMM) in combination with two measures of data quality to filter out uninformative frames. Furthermore, we present a two-level framework based on an embedded hidden Markov model (EHHM) to incorporate the proposed quality assessment algorithm into a complete, automated diagnostic image analysis system for colonoscopy video.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sun Young Park, Sun Young Park, Dusty Sargent, Dusty Sargent, Inbar Spofford, Inbar Spofford, Kirby Vosburgh, Kirby Vosburgh, } "Colonoscopy video quality assessment using hidden Markov random fields", Proc. SPIE 7963, Medical Imaging 2011: Computer-Aided Diagnosis, 79632P (9 March 2011); doi: 10.1117/12.878217; https://doi.org/10.1117/12.878217
PROCEEDINGS
8 PAGES


SHARE
Back to Top