You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 March 20113D lithography modeling for ground rule development
The ability to incorporate the effect of patterned underlayers in a 3-dimensional physical resist model that
truly mimics the process on real wafers could be used to formulate robust ground rules for design. We have
shown as an example block level simulations, where the resist critical dimension is determined by the
presence of STI (shallow trench isolation) and/or patterned gate level underneath & their relative spacing,
as confirmed on wafer. We will demonstrate how the results of such study could be used for creating
ground rules which are truly dependent on the interaction between the current layer resist & the patterned
layers underneath. We have also developed a new way to visualize lithographic process variations in 3-D
space that is useful for simulation analysis that can prove very helpful in ground rule development and
process optimization. Such visualization capability in the dataprep flow to flag issues or dispose critical
structures increases speed and efficiency in the mask tapeout process.