27 April 2011 MRF-actuator concepts for HMI and industrial applications
Author Affiliations +
Actuators based on magnetorheological fluids, like brakes and clutches, offer a high dynamical and almost linear force generation combined with fast response times and a high force density. In this paper concepts of MRF based actuators with radial and axial shear gaps for realizing braking and coupling functions in HMI devices and industrial applications are presented. Designing well defined shear gaps and appropriate electromagnetically driven excitation systems, combined brake and clutch functionalities can be realized even by providing current less bias torques. While actuators using radial shear gaps meet often the requirements for applications with low rotational speeds, e.g. HMI applications, designs with axial shear gaps are predestinated for applications for higher rotational speeds due to their robustness against centrifugation impacts. Experimental results of realized actuators underlining the potential for HMI and industrial applications and reveal the advantages of MRF as the smooth adjustable torque, fast response time and noiseless operation.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jürgen Maas, Jürgen Maas, Dirk Güth, Dirk Güth, Ansgar Wiehe, Ansgar Wiehe, } "MRF-actuator concepts for HMI and industrial applications", Proc. SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011, 797714 (27 April 2011); doi: 10.1117/12.886376; https://doi.org/10.1117/12.886376


Back to Top