18 April 2011 Novel low-cost millimeter-wave system for road surface characterization
Author Affiliations +
A novel low-cost low-complexity design based on Radar technology operating at millimeter wave is presented for the characterization of road surface conditions in real-time. At frequencies of 24-77 GHz the wavelength is long enough to obtain slight penetration in the top 1-2" of asphalt or concrete surface, but is also short enough to resolve details such as crack or pothole depth/etc. The Radar system operates by continuously outputting radiation and sampling the roadway-reflected radiation through a receiver-downconverter-sampler system. In initial laboratory testing, the received signal strength was observed to obey the inverse distance 1/R2 relationship. The received signal is further dependent on the incidence angle between the plane of the sensor and the plane of the roadway. One observation from this is the need of auxiliary sensors for determining the distance above the road surface as well as providing incident angle data. The sensor was further mounted on a movable cart used to measure the reflected signal on a variety of road surfaces (smooth, rough, surface defects, and environment factors such as various levels of moisture). By comparing measurements of the material after soaking to measurements in the dry state, there is substantial differentiation in measurements, which indicates the ability to measure the porosity of various materials. Lastly the sensor bandwidth provides the capability to measure surface roughness illustrated in the standard deviation of measurement data. On a macroscopic level, the aggregate in a roadway acts as a series of random scatterers and rough roadways or roadways with surface voids show a large variance between measurements of nearby points.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Dan Busuioc, Dan Busuioc, Kyle Anstey, Kyle Anstey, Carey Rappaport, Carey Rappaport, Ralf Birken, Ralf Birken, Jeffrey Doughty, Jeffrey Doughty, Ming Wang, Ming Wang, } "Novel low-cost millimeter-wave system for road surface characterization", Proc. SPIE 7983, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2011, 79831H (18 April 2011); doi: 10.1117/12.880025; https://doi.org/10.1117/12.880025


System analysis of a short-range SAR repeater
Proceedings of SPIE (May 16 2006)
Radar-based concealed threat detector
Proceedings of SPIE (April 29 2009)
Radar-detector detector for safety applications
Proceedings of SPIE (July 18 2000)

Back to Top