Twenty years ago the first laser system was installed to solve a manufacturing problem, the drilling of precise holes in diamonds to produce a wire drawing die. The early system installations either for laser technology or end use reasons, were categorized as specials, that is units which differed in specification and performance from previous units. During the first ten years it was quite common for industrial applications to be processed by a customized unit. As the number of common applications grew, and as the specific application needs began to dictate a uniform approach to successful resolution, the number of customized systems began to decline. Coupled with this was the system suppliers' efforts to standardize product design to reduce manufacturing complexity and cost. Today the users of industrial laser systems have a choice when considering the laser in a manufacturing operation. within certain categories such as sheet metal cutting, turbine blade drilling, and ceramic scribing users can choose from a representative number of stan-dard systems. For other applications such as marking, hermetic sealing, and transmission component welding suppliers can provide variations of designs which are known as semi-standards. The third and last category, specials, makes up a reasonable share of the units currently being installed in production applications. These specials are the subject of this paper. Identification of a specific manufacturing problem and exploration of the reasons why a laser could be cost effective are presented. Illustrations of a number of these manufac-turing problems will show how a custom laser design provided a practical, satisfactory, solution. The novel system concepts employed to effect the solution will be discussed. Applications selected include: oven liner cutting, transmission gear welding, exhaust pipe cutting, and aircraft engine part processing.
|