Front Matter: Volume 8032
Next-Generation Spectroscopic Technologies IV

Mark A. Druy
Richard A. Crocombe
Editors

25–26 April 2011
Orlando, Florida, United States

Sponsored and Published by
SPIE
Contents

 vii Conference Committee
 ix Introduction

SESSION 1 ENABLING TECHNOLOGIES

8032 03 Light focusing by chirped waveguide grating coupler [8032-02]
P. Kumar, Wayne State Univ. (United States); B. Bergner, D. Cook, Spectrum Scientific, Inc. (United States); I. Avrutsky, Wayne State Univ. (United States)

8032 05 MEMS-based tunable Fabry-Perot filters [8032-04]
N. Gupta, U.S. Army Research Lab. (United States); S. Tan, D. R. Zander, Smart Systems Technology and Commercialization Ctr. (United States)

SESSION 2 LASER-BASED AND CAVITY RINGDOWN SPECTROMETRY I

8032 06 Microsensors based on quantum cascade lasers [8032-05]
S. Wu, A. Deev, Y. Tang, PEER Institute (United States) and California Institute of Technology (United States)

8032 07 Development of a field-deployable isotopic N2O analyzer based on mid-infrared cavity ring-down spectroscopy [8032-06]
X. Du, A. D. Farinas, E. R. Crosson, Picarro, Inc. (United States); D. Balslev-Clausen, T. Blunier, Niels Bohr Institute, Univ. of Copenhagen (Denmark)

8032 08 Mid-infrared absorption spectroscopy using quantum cascade lasers [8032-07]
F. Haibach, A. Erlich, E. Deutsch, Block Engineering, LLC (United States)

8032 09 Precision and accuracy of miniature tunable diode laser absorption spectrometers [8032-08]

SESSION 3 LASER-BASED AND CAVITY RINGDOWN SPECTROMETRY II

8032 0C Quantum cascade laser-based substance detection: approaching the quantum noise limit [8032-10]
P. C. Kuffner, K. J. Conroy, T. K. Boyson, G. Milford, M. A. Mabrok, A. G. Kallapur, I. R. Petersen, The Univ. of New South Wales (Australia); M. E. Calzada, T. G. Spence, Loyola Univ. New Orleans (United States); K. P. Kirkbride, Australian Federal Police (Australia); C. C. Harb, The Univ. of New South Wales (Australia)
Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft [8032-11]
J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, Maxion Technologies, Inc. (United States); D. M. Sonnenfroh, K. R. Parameswaran, Physical Sciences Inc. (United States)

Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser [8032-12]
G. Medhi, Univ. of Central Florida (United States); A. V. Muravjov, H. Saxena, Zyberwear, Inc. (United States); C. J. Fredricksen, T. Brusentsova, R. E. Peale, Univ. of Central Florida (United States); O. Edwards, Zyberwear, Inc. (United States)

On the accuracy of decay constant measurement by swept-cavity heterodyne cavity ringdown spectroscopy [8032-13]
K. K. M. B. D. Silva, A. van der Walt, J. M. Dell, L. Faraone, The Univ. of Western Australia (Australia)

SESSION 4 RAMAN, SERS, AND SECURITY APPLICATIONS

Rapid and field-deployable biological and chemical Raman-based identification [8032-14]
E. Botonjic-Sehic, Morpho Detection (United States); T. L. Paxon, GE Global Research (United States); H. Boudries, Morpho Detection (United States)

Detection of fire protection and mineral glasses in industrial recycling using Raman mapping spectroscopy [8032-15]
M. De Biasio, T. Arnold, G. McGunnigle, M. Kraft, R. Leitner, Carinthian Tech Research AG (Austria); D. Balthasar, V. Rehrmann, Titech GmbH (Germany)

Toward non-invasive detection of concealed energetic materials in-field under ambient light conditions [8032-16]
B. Cletus, W. Olds, E. L. Izake, P. M. Fredericks, H. Panayiotou, E. Jaatinen, Queensland Univ. of Technology (Australia)

Integration of optical devices and nanotechnology for conducting genome research [8032-17]
P.-Y. Chung, P. Parag, Z. Zhu, C. Chegini, G. Schultz, W. Tan, P. Jiang, C. Batich, Univ. of Florida (United States)

Application of an ion mobility spectrometer with pulsed ionisation source in the detection of dimethyl methylphosphonate and toluene diisocyanate [8032-18]
W. Baether, Draegerwerk AG & Co. (Germany); S. Zimmermann, Leibniz Univ. Hannover (Germany); F. Gunzer, The German Univ. in Cairo (Egypt)

Development of a fieldable rugged TATP surface-enhanced Raman spectroscopy sensor [8032-19]
K. M. Spencer, S. L. Clauson, J. M. Sylvia, EIC Labs., Inc. (United States)

SESSION 5 NOVEL SPECTROMETERS I

Dual-channel polarization imaging spectrometer [8032-20]
T. Mu, C. Zhang, Xi’an Jiaotong Univ. (China)
8032 ON Photonic crystal slot waveguide for high sensitivity on-chip near-infrared optical absorption spectroscopy of xylene in water [8032-21]
S. Chakravarty, Omega Optics, Inc. (United States); W.-C. Lai, The Univ. of Texas at Austin (United States); X. Wang, Omega Optics, Inc. (United States); C.-Y. Lin, R. T. Chen, The Univ. of Texas at Austin (United States)

A compact and portable IR analyzer: progress of a MOEMS FT-IR system for mid-IR sensing [8032-22]
A. Kenda, Carinthian Tech Research AG (Austria); S. Lüttjohann, Bruker Optik GmbH (Germany); T. Sandner, Fraunhofer Institute for Photonic Microsystems (Germany); M. Kraft, A. Tortschanoff, Carinthian Tech Research AG (Austria); A. Simon, Bruker Optik GmbH (Germany)

Portable coherent frequency-domain THz spectrometer [8032-23]
R. T. Logan, Jr., J. R. Demers, B. L. Kasper, Encore Corp. (United States)

Compact remote Raman and LIBS system for detection of minerals, water, ices, and atmospheric gases for planetary exploration [8032-24]
A. K. Misra, S. K. Sharma, T. E. Acosta, D. E. Bates, Univ. of Hawai‘i (United States)

SESSION 6 NOVEL SPECTROMETERS II

Real-time smart fluorescence sensor platform [8032-26]
J. E. Dickens, M. S. Vaughn, M. Taylor, GlaxoSmithKline (United States); M. Ponstingl, Custom Sensors and Technology (United States)

A compact, fast, wide-field imaging spectrometer system [8032-29]
P. Mouroulis, B. E. Van Gorp, V. E. White, J. M. Mumolo, Jet Propulsion Lab. (United States); D. Hebert, M. Feldman, Louisiana State Univ. (United States)

High-speed resonant FTIR spectrometer [8032-30]
J. Rentz Dupuis, D. Carlson, D. Mansur, T. Evans, R. Vaillancourt, J. Engel, OPTRA, Inc. (United States); B. Engel, Nelson Air Corp. (United States)

SESSION 7 IMAGING AND CHEMOMETRICS

Compact high-resolution VIS/NIR hyperspectral sensor [8032-31]
T. Hyvärinen, E. Herrala, Specim Spectral Imaging Ltd. (Finland); W. Procino, O. Weatherbee, SpecTIR LLC (United States)

Advances in hyperspectral LWIR pushbroom imagers [8032-32]
H. Holma, A.-J. Mattila, T. Hyvärinen, Specim Spectral Imaging Ltd. (Finland); O. Weatherbee, SpecTIR LLC (United States)

Near-infrared imaging spectroscopy for counterfeit drug detection [8032-33]
T. Arnold, M. De Biasio, R. Leitner, Carinthian Tech Research AG (Austria)
8032 0Z **Advanced algorithms for the identification of mixtures using condensed-phase FT-IR spectroscopy** [8032-34]
J. Arnó, G. Andersson, D. Levy, C. Tomczyk, P. Zou, E. Zuidema, Smiths Detection (United States)

8032 10 **Development of simple algorithm for direct and rapid determination of cotton maturity from FT-IR spectroscopy** [8032-35]
Y. Liu, D. Thibodeaux, G. R. Gamble, USDA, Agricultural Research Service (United States)

POSTER SESSION

8032 11 **Sensing of FWHM and peak wavelength for LEDs via low-cost filter-array spectrum sensor** [8032-28]
C.-C. Chang, C.-C. Chen, National Taipei Univ. of Technology (Taiwan); U. Kurokawa, B. I. Choi, Nanolambda Inc. (United States)

8032 12 **Snapshot spectral imaging demonstrator** [8032-37]
M. De Biasio, T. Arnold, A. Tortschanoff, R. Leitner, Carinthian Tech Research AG (Austria)

Author Index
Conference Committee

Symposium Chair

William Jeffrey, HRL Laboratories, LLC (United States)

Symposium Cochair

Kevin P. Meiners, Office of the Secretary of Defense (United States)

Conference Chairs

Mark A. Druy, Physical Sciences Inc. (United States)
Richard A. Crocombe, Thermo Fisher Scientific Inc. (United States)

Program Committee

John M. Dell, The University of Western Australia (Australia)
Erik Deutsch, Block Engineering, LLC (United States)
Richard D. Driver, Headwall Photonics Inc. (United States)
Jason M. Eichenholz, Ocean Optics, Inc. (United States)
Michael B. Frish, Physical Sciences Inc. (United States)
David M. Haaland, Spectral Resolutions (United States)
Fred Haibach, Block Engineering, LLC (United States)
Martin Kraft, Carinthian Tech Research AG (Austria)
Jouko O. Malinen, VTT Optical Instruments (Finland)
Christopher J. Manning, Manning Applied Technologies, Inc. (United States)
Curtis A. Marcott, Light Light Solutions, LLC (United States)
Robert G. Messerschmidt, Rare Light Inc. (United States)
Ellen V. Miseo, Agilent Technologies, Inc. (United States)
David W. Schiering, Smiths Detection (United States)
Eric B. Takeuchi, Daylight Solutions, Inc. (United States)
Introduction

The past twenty years have seen a massive investment in photonics, electronics and MEMS, aimed at developing new telecommunications capabilities and innovative consumer products. These investments have lead to advances in miniature optics, light sources, tunable filters, array detectors, fiber optic sensors, and a range of other photonic devices, across the whole electromagnetic spectrum, along with technologies for their mass production. In addition, there have been remarkable developments in handheld consumer electronics (cell phones, RF technology, processors, operating systems, displays, user interfaces, memory, Bluetooth, WiFi, cameras, accelerometers, GPS, etc.). All of these advances are increasingly being exploited in new spectroscopic instruments, and are now poised to be the basis of next generation handheld scientific instruments.

Portable and handheld instruments are being developed that are often more sensitive and selective, smaller, cheaper, and more robust than their laboratory predecessors. Concurrent improvements in analytical theory, data analysis methods and portable processors enable these spectroscopic devices to give specific, actionable, answers to their non-specialist operators. Spectroscopy-based systems are now making critical judgments in environments and applications that were unreachable twenty years ago, from hazardous materials to the operating theater, and from field geologists to customs and border personnel.

Advances in array detectors (CCD, CID, InGaAs, InSb, MCT, CMOS, etc.) are enabling a new generation of faster imaging spectrometers, with both laboratory and field applications. Lower-cost infrared arrays have been developed, employing MEMS techniques. Again, advances in spectroscopic data processing are providing the ability to generate answers based on chemical-based images from the mass of data produced. Finally, spectrometers are being coupled to functionalized sensors to detect specific species.

The emphasis in this conference is on advanced technologies for spectroscopic instrumentation, particularly the infrared, near-infrared, and Raman molecular techniques, but also including advances enabling miniature and portable spectrometers across the electromagnetic spectrum, including X-ray fluorescence, teraHertz, electron spin resonance, nuclear magnetic resonance and mass spectrometry.

This conference premiered at Optics East 2007 in Boston, MA and is now part of the Defense, Security & Sensing Symposium. In 2011, the conference spanned two days, and was divided into sessions focusing on: Enabling Technologies; Laser-based and Cavity Ringdown Spectrometry; Raman, SERS and Security...
Applications; Novel Spectrometers; and Imaging and Chemometrics. In all, 34 papers were presented, and we are pleased to be able to bring you 31 of them in these proceedings.

On behalf of our program committee members, we hope that we can count on your participation in a future Next-Generation Spectroscopic Technologies conference.

Mark A. Druy
Richard A. Crocombe