7 June 2011 The physiology of keystroke dynamics
Author Affiliations +
A universal implementation for most behavioral Biometric systems is still unknown since some behaviors aren't individual enough for identification. Habitual behaviors which are measurable by sensors are considered 'soft' biometrics (i.e., walking style, typing rhythm), while physical attributes (i.e., iris, fingerprint) are 'hard' biometrics. Thus, biometrics can aid in the identification of a human not only in cyberspace but in the world we live in. Hard biometrics have proven to be a rather successful form of identification, despite a large amount of individual signatures to keep track of. Virtually all soft biometric strategies, however, share a common pitfall. Instead of the classical pass/fail decision based on the measurements used by hard biometrics, a confidence threshold is imposed, increasing False Alarm and False Rejection Rates. This unreliability is a major roadblock for large scale system integration. Common computer security requires users to log-in with a six or more digit PIN (Personal Identification Number) to access files on the disk. Commercially available Keystroke Dynamics (KD) software can separately calculate and keep track of the mean and variance for each time travelled between each key (air time), and the time spent pressing each key (touch time). Despite its apparent utility, KD is not yet a robust, fault-tolerant system. We begin with a simple question: how could a pianist quickly control so many different finger and wrist movements to play music? What information, if any, can be gained from analyzing typing behavior over time? Biology has shown us that the separation of arm and finger motion is due to 3 long nerves in each arm; regulating movement in different parts of the hand. In this paper we wish to capture the underlying behavioral information of a typist through statistical memory and non-linear dynamics. Our method may reveal an inverse Compressive Sensing mapping; a unique individual signature.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jeffrey Jenkins, Jeffrey Jenkins, Quang Nguyen, Quang Nguyen, Joseph Reynolds, Joseph Reynolds, William Horner, William Horner, Harold Szu, Harold Szu, "The physiology of keystroke dynamics", Proc. SPIE 8058, Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering IX, 80581N (7 June 2011); doi: 10.1117/12.887419; https://doi.org/10.1117/12.887419


A hierarchical artificial retina architecture
Proceedings of SPIE (May 20 2009)
Oh say, can you see? The physiology of vision
Proceedings of SPIE (May 31 1991)
Designing the HMD for perfection a look at the...
Proceedings of SPIE (May 21 2012)
Binocular stereo via log-polar retinas
Proceedings of SPIE (June 15 1995)

Back to Top