Rapid development of novel, functional metamaterials made of purely dielectric, plasmonic, or composite
structures which exhibit tunable optical frequency magnetic responses creates a need for new measurement
techniques. We propose a method of actively measuring magnetic responses, i.e. magnetic dispersion, of such
metamaterials within a wide range of optical frequencies with a single probe by exciting individual elementary
cells within a larger matrix. The probe is made of a tapered optical fiber with a radially corrugated metal
coating. It concentrates azimuthally polarized light in the near-field below the apex into a subwavelength
size focus of the longitudinal magnetic field component. An incident azimuthally polarized beam propagates
in the core until it reaches the metal stripes of constant angular width running parallel to the axis. For a
broad frequency range light-to-plasmon coupling is assured as the lattice constant changes with the radius
due to constant angular width. Bound plasmonic modes in slits between the metal stripes propagate toward
the apex where circular currents in stripes and displacement currents in slits generate a strong longitudinal
magnetic field. The energy density of the longitudinal magnetic component in the vicinity of the axis is
much stronger than that of all the other components combined, what allows for pure magnetic excitation of
magnetic resonances rather than by the electric field. The scattered signal is then measured in the far-field
and analyzed.
Tomasz J. Antosiewicz, Piotr Wróbel, Tomasz Szoplik, "Magnetic probe for material characterization at optical
frequencies," Proc. SPIE 8070, Metamaterials VI, 80700E (18 May 2011);