Optical Coherence Tomography and Coherence Techniques V

Rainer A. Leitgeb
Brett E. Bouma
Editors

24–26 May 2011
Munich, Germany

Sponsored and Published by
SPIE
The Optical Society of America (United States)

Cooperating Organisations
Deutsche Gesellschaft für Lasermedizin (Germany)
Visions for Better Healthcare–Biophotonics Research Program (Germany)

With Support From
Air Force Office of Scientific Research (United States)
Photonics 4 Life–European Network of Excellence for Biophotonics (Germany)

Student Award Sponsors
Toptica Photonics AG (Germany)
ThorLabs (United Kingdom)

Volume 8091

Contents

ix Conference Committee
xi Introduction

SESSION 1 ADVANCED COHERENT SENSING AND IMAGING CONCEPTS I

8091 04 High-speed functional OCT with self-reconstructive Bessel illumination at 1300 nm (Invited Paper) [8091-01]
C. Blatter, B. Grajciar, Medical Univ. Vienna (Austria); C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, Ludwig-Maximilians-Univ. München (Germany); R. A. Leitgeb, Medical Univ. Vienna (Austria)

SESSION 2 OPTICAL COHERENCE MICROSCOPY

8091 08 Optical characterization and feasibility study of multifunctional polylactic-co-glycolic acid (PLGA) nanoparticles designed for photo-thermal optical coherence tomography [8091-05]
H. M. Subhash, Oregon Health and Science Univ. (United States); H. Xie, J. W. Smith, Sanford-Burnham Medical Research Institute (United States); O. McCarty, Oregon Health and Science Univ. (United States)

8091 09 Contrast modification for ultra-high resolution low-coherence interference microscopy by Fourier-plane filtering [8091-06]
S. E. Schausberger, B. Heise, Johannes Kepler Univ. Linz (Austria); C. Maurer, S. Bernet, M. Ritsch-Marte, Innsbruck Medical Univ. (Austria); D. Stifter, Johannes Kepler Univ. Linz (Austria)

SESSION 3 POLARIZATION-SENSITIVE OCT

8091 0A Speckle noise reduction by averaging in polarization sensitive spectral domain optical coherence tomography [8091-07]
E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, C. K. Hitzenberger, Medical Univ. of Vienna (Austria)

8091 0D A method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography [8091-10]
Z. Lu, D. K. Kasaragod, S. J. Matcher, The Univ. of Sheffield (United Kingdom)

8091 0E A theoretical framework for the analysis of optical anisotropy in birefringent biological tissues with polarization-sensitive optical coherence tomography [8091-11]
D. K. Kasaragod, Z. Lu, J. Jacobs, S. J. Matcher, The Univ. of Sheffield (United Kingdom)
SESSION 4 MICROcirculation Imaging

8091 0J Automated extraction of 3D Doppler OCT signatures using a support vector machine
[8091-16]
A. S. G. Singh, T. Schmoll, R. A. Leitgeb, Medical Univ. of Vienna (Austria)

8091 0K Intra- and inter-frame differential Doppler imaging [8091-17]
T. Schmoll, I. R. Ivascu, A. S. G. Singh, Medical Univ. Vienna (Austria); A. Unterhuber,
Femtolasers Produktions GmbH (Austria); R. A. Leitgeb, Medical Univ. Vienna (Austria)

8091 0L Enhanced joint spectral and time domain optical coherence tomography for quantitative
flow velocity measurement [8091-18]
J. Walther, E. Koch, Dresden Univ. of Technology (Germany)

SESSION 5 ADVANCED Data Processing and Signal EnHANCEMENT

8091 0N Mechanical compression for contrasting OCT images of biotissues [8091-20]
M. Yu. Kirillin, Institute of Applied Physics (Russian Federation); P. D. Argba, Institute of
Applied Physics (Russian Federation) and N. I. Lobachevsky State Univ. of Nizhny Novgorod
(Russian Federation); V. A. Kamensky, Institute of Applied Physics (Russian Federation)

8091 0P Fourier domain optical coherence tomography axial resolution improvement with
modulated deconvolution [8091-22]
E. Bousi, I. Charalambous, C. Pitris, Univ. of Cyprus (Cyprus)

8091 0Q Dispersion compensation in spectral domain optical coherence tomography in the
continuum of fractional Fourier domains [8091-23]
N. Lippok, P. Nielsen, F. Vanholsbeeck, The Univ. of Auckland (New Zealand)

SESSION 6 TECHNOLOGICAL ADVANCES

8091 0T Low dispersion integrated Michelson interferometer on silicon on insulator for optical
cohereNce tomography [8091-26]
G. Yurtsever, K. Komorowska, R. Baets, Ghent Univ. (Belgium)

8091 0V Real-time massively parallel processing of spectral optical coherence tomography data on
graphics processing units [8091-28]
M. Sylwestrzak, D. Szlag, M. Szkulmowski, P. Targowski, Nicolaus Copernicus Univ. (Poland)

8091 0X Dual excitation waveform Fabry-Pérot tunable filters used in swept sources [8091-30]
I. Trifanov, Multiwave Photonics S.A. (Portugal); A. Bradu, L. Neagu, Univ. of Kent (United
Kingdom); A. Lobo Ribeiro, Univ. Fernando Pessoa (Portugal); A. G. Podoleanu, Univ. of Kent
(United Kingdom)

SESSION 7 INTRAVASCULAR and ENDOSCOPIC OCT

8091 0Y Endoscopic optical coherence tomography for imaging the tympanic membrane [8091-31]
A. Burkhardt, J. Walther, P. Cimalla, M. Bornitz, E. Koch, Technische Univ. Dresden (Germany)
Automated volumetric stent analysis of in-vivo intracoronary optical coherence tomography three-dimensional datasets [8091-33]
G. J. Ughi, Catholic Univ. Leuven (Belgium); T. Adriaenssens, K. Onsea, Univ. Hospitals Leuven (Belgium); C. Dubois, Catholic Univ. Leuven (Belgium) and Univ. Hospitals Leuven (Belgium); M. Coosemans, Univ. Hospitals Leuven (Belgium); P. Sinnaeve, W. Desmet, Catholic Univ. Leuven (Belgium) and Univ. Hospitals Leuven (Belgium); J. D’hooge, Catholic Univ. Leuven (Belgium)

Improved OCT imaging of lung tissue using a prototype for total liquid ventilation [8091-39]
C. Schnabel, S. Meissner, E. Koch, Dresden Univ. of Technology (Germany)

Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser [8091-41]
L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, E. Koch, Dresden Univ. of Technology (Germany)

Scattering properties and transparency characterization of human corneal grafts [8091-49]
O. Casadessus, G. Georges, L. Siolade-Lamoine, C. Deumlié, Institut Fresnel, CNRS, Aix-Marseille Univ. (France); J. Conrath, L. Hoffart, Hôpital La Timone, Aix-Marseille Univ. (France)

Holoscopy: holographic optical coherence tomography [8091-50]
D. Hillmann, Thorlabs GmbH (Germany) and Medizinisches Laserzentrum Lübeck (Germany); C. Lührs, Thorlabs GmbH (Germany) and Institut für Biomedizinische Optik (Germany); T. Bonin, Institut für Biomedizinische Optik (Germany); P. Koch, Thorlabs GmbH (Germany); A. Vogel, Institut für Biomedizinische Optik (Germany); G. Hüttmann, Medizinisches Laserzentrum Lübeck (Germany) and Institut für Biomedizinische Optik (Germany)

Comparison of fast swept source full-field OCT with conventional scanning OCT [8091-53]
T. Bonin, Univ. of Lübeck (Germany); P. Koch, Thorlabs GmbH (Germany); G. Hüttmann, Univ. of Lübeck (Germany) and Medical Laser Ctr. Lübeck (Germany)

Time-domain coherence-gated Shack-Hartmann wavefront sensor [8091-54]
J. Wang, A. G. Podoleanu, Univ. of Kent (United Kingdom)

Axial resolution improvement by spectral data fusion in simultaneous dual-band optical coherence tomography [8091-56]
P. Cimalla, M. Gaertner, J. Walther, E. Koch, Dresden Univ. of Technology (Germany)
Functional imaging of inherited retinal disease with a commercial optical coherence tomography device [8091-57]
T. Theelen, C. B. Hoyng, B. J. Klevering, Radboud Univ. Nijmegen Medical Ctr. (Netherlands); B. Cense, Utsunomiya Univ. (Japan)

Investigation of alveolar tissue deformations using OCT combined with fluorescence microscopy [8091-58]
M. Gaertner, P. Cimalla, L. Knels, S. Meissner, C. Schnabel, Dresden Univ. of Technology (Germany); W. M. Kuebler, Charité Berlin (Germany); E. Koch, Dresden Univ. of Technology (Germany)

Structural analysis of artificial skin equivalents [8091-59]
R. Schmitt, RWTH Aachen Univ. (Germany) and Fraunhofer Institute for Production Technology (Germany); U. Marx, Fraunhofer Institute for Production Technology (Germany); H. Walles, L. Schober, Fraunhofer Institute for Interfacial Engineering and Biotechnology (Germany)

Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging [8091-60]
A. V. Bykov, A. P. Popov, Univ. of Oulu (Finland) and M.V. Lomonosov Moscow State Univ. (Russian Federation); A. V. Priezzhev, M.V. Lomonosov Moscow State Univ. (Russian Federation); R. Myllylä, Univ. of Oulu (Finland)

Evaluation of a swept-laser optical coherence tomography light source based on a novel quantum-dot based semiconductor optical amplifier [8091-61]
N. Krstajic, D. Childs, N. Peyvast, D. Kasaragod, S. J. Matcher, The Univ. of Sheffield (United Kingdom); I. Krestnikov, Innolume GmbH (Germany); R. Hogg, The Univ. of Sheffield (United Kingdom)

Imagistic evaluation of direct dental restoration: en face OCT versus SEM and microCT [8091-62]
M. L. Negruțiu, C. Sinescu, F. Topașă, Univ. of Medicine and Pharmacy Victor Babeș, Timișoara (Romania); C. Ionescu, State Univ. of New York at Buffalo (United States); C. Mărcățeanu, E. L. Petrescu, Univ. of Medicine and Pharmacy Victor Babeș, Timișoara (Romania); A. G. Podoleanu, Univ. of Kent (United Kingdom)

Spectroscopic optical coherence tomography for substance identification [8091-65]
V. Jaedicke, Ruhr-Universität Bochum (Germany); H. Wiethoff, S. Aghaer, Univ. of Applied Sciences (Germany); C. Kasseck, N. C. Gerhardt, Ruhr-Universität Bochum (Germany); H. Welp, Univ. of Applied Sciences (Germany); M. R. Hofmann, Ruhr-Universität Bochum (Germany)

Measuring the thickness of the peritoneal membrane in mice with optical coherence tomography [8091-66]
R. Alwafi, M. Dickinson, The Univ. of Manchester (United Kingdom); P. Brenchley, Manchester Royal Infirmary (United Kingdom); L. Walkin, The Univ. of Manchester (United Kingdom)

Blind deconvolution algorithm for restoration OCT images with diffraction limited resolution [8091-67]
A. A. Moiseev, G. V. Gelikonov, P. A. Shilyagin, V. M. Gelikonov, Institute of Applied Physics (Russian Federation)
Early characterization of occlusal overloaded cervical dental hard tissues by en face optical coherence tomography [8091-68]
C. Mărcățeanu, M. Negruțiu, C. Sinescu, E. T. Stoica, Univ. of Medicine and Pharmacy Victor Babeș, Timișoara (Romania); C. Ioniță, State Univ. of New York at Buffalo (United States); T. Florin, L. Vasile, Univ. of Medicine and Pharmacy Victor Babeș, Timișoara (Romania); A. Bradu, G. Dobre, A. G. Podoleanu, Univ. of Kent (United Kingdom)

Study on image feature extraction and classification for human colorectal cancer using optical coherence tomography [8091-69]
S.-W. Huang, S.-Y. Yang, W.-C. Huang, Industrial Technology Research Institute (Taiwan); H.-M. Chiu, National Taiwan Univ. Hospital (Taiwan); C.-W. Lu, Industrial Technology Research Institute (Taiwan)

1550nm superluminescent diode and anti-Stokes effect CCD camera based optical coherence tomography for full-field optical metrology [8091-70]
L. Kredzinski, M. J. Connelly, Univ. of Limerick (Ireland)

Integration of spectral domain optical coherence tomography with microperimetry generates unique datasets for the simultaneous identification of visual function and retinal structure in ophthalmological applications [8091-71]
P. Kouten, G. Gallimore, R. D. Vincent, N. R. Sabates, F. N. Sabates, Univ. of Missouri (United States)

Design and development of a galvanometer inspired dual beam optical coherence tomography system for flow velocity quantification of the microvasculature [8091-72]
S. M. Daly, E. Jonathan, Univ. of Limerick (Ireland); M. J. Leahy, Univ. of Limerick (Ireland) and Royal College of Surgeons (Ireland)

Screening cervical and oesophageal tissues using optical coherence tomography [8091-73]
G. R. G. Erry, National Physical Lab. (United Kingdom); F. Bazant-Hegemark, Michelson Diagnostics Ltd. (United Kingdom); M. D. Read, Gloucestershire Hospitals NHS Foundation Trust (United Kingdom); N. Stone, Cranfield Univ. (United Kingdom) and Gloucestershire Hospitals NHS Foundation Trust (United Kingdom)

OCT in difficult diagnostic cases in gynecology [8091-75]
O. Panteleeva, Clinical Hospital of the Russian Railways (Russian Federation); N. Shakhova, Institute of Applied Physics (Russian Federation) and Nizhny Novgorod Medical Academy (Russian Federation); G. Gelikonov, Institute of Applied Physics (Russian Federation); E. Yunusova, Nizhny Novgorod Medical Academy (Russian Federation)

Chromatic dispersion compensation of an OCT system with a programmable spectral filter [8091-76]
A. Yang, F. Vanholsbeeck, S. Coen, The Univ. of Auckland (New Zealand); J. Schroeder, The Univ. of Sydney (Australia)

Pathogenesis of the dry eye syndrome observed by optical coherence tomography in vitro [8091-77]
O. Kray, M. Lenz, F. Spöler, S. Kray, H. Kurz, RWTH Aachen Univ. (Germany)

Author Index
Conference Committee

General Chairs

Christoph K. Hitzenberger, Medizinische Universität Wien (Austria)
Brian W. Pogue, Dartmouth University (United States)

Programme Chairs

Peter E. Andersen, Technical University of Denmark (Denmark)
Irene Georgakoudi, Tufts University (United States)

Conference Chairs

Rainer A. Leitgeb, Medizinische Universität Wien (Austria)
Brett E. Bouma, Massachusetts General Hospital (United States)

Programme Committee

Jennifer K. Barton, The University of Arizona (United States)
Stephen A. Boppart, University of Illinois at Urbana-Champaign (United States)
Johannes F. de Boer, Vrije Universiteit Amsterdam (Netherlands)
Wolfgang Drexler, Medizinische Universität Wien (Austria)
James G. Fujimoto, Massachusetts Institute of Technology (United States)
Robert A. Huber, Ludwig-Maximilians-Universität München (Germany)
Theo Lasser, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Adrian G. Podoleanu, University of Kent (United Kingdom)
Andrew M. Rollins, Case Western Reserve University (United States)
David D. Sampson, The University of Western Australia (Australia)
Natalia M. Shakhova, Institute of Applied Physics (Russian Federation)
Gijs van Soest, Erasmus MC (Netherlands)
Ton G. van Leeuwen, Academisch Medisch Centrum (Netherlands)
Julia Welzel, General Hospital Augsburg (Germany)
Maciej Wojtkowski, Nicolaus Copernicus University (Poland)
Yoshiaki Yasuno, University of Tsukuba (Japan)

Session Chairs

Medical Imaging: Joint Session with E-CLEO
Peter E. Andersen, Technical University of Denmark (Denmark)
Monika A. Ritsch-Marte, Innsbruck Medical University (Austria)
Advanced Coherent Sensing and Imaging Concepts I
Rainer A. Leitgeb, Medizinische Universität Wien (Austria)

Optical Coherence Microscopy
Theo Lasser, École Polytechnique Fédérale de Lausanne (Switzerland)

Polarization-Sensitive OCT
Johannes F. de Boer, Vrije Universiteit Amsterdam (Netherlands)

Microcirculation Imaging
Yoshiaki Yasuno, University of Tsukuba (Japan)

Advanced Data Processing and Signal Enhancement
David D. Sampson, The University of Western Australia (Australia)

Technological Advances
Robert A. Huber, Ludwig-Maximilians-Universität München (Germany)

Intravascular and Endoscopic OCT
Brett E. Bouma, Wellman Center for Photomedicine (United States)

Biomedical Applications of OCT
Adrian G. Podoleanu, University of Kent (United Kingdom)

Ophthalmic OCT Techniques
Wolfgang Drexler, Medizinische Universität Wien (Austria)

Advanced Coherent Sensing and Imaging Concepts II
Maciej Wojtkowski, Nicolaus Copernicus University (Poland)

Poster Session
Rainer A. Leitgeb, Medizinische Universität Wien (Austria)
Introduction

This volume is a collection of papers presented at the Optical Coherence Tomography and Coherence Techniques V conference held May 22–26, 2011 at the European Conference of Biomedical Optics in Munich, Germany.

These proceedings provide an excellent overview of current state-of-the art OCT technology and also gives new perspectives for applications in medicine, biology, and material sciences.

This year is a particularly interesting one for optical coherence tomography (OCT) since it marks 20 years since the first notion of OCT. This was paid tribute by one plenary talk and one tutorial. Wolfgang Drexler presented an exhaustive overview over two decades of development, application and commercialization, mentioning the self accelerating circle that drives the fast success of this technology. James Fujimoto gave a detailed and instructive tutorial on OCT during a joint session with the CLEO/Europe EQEC with the aim to create a bridge between biomedical technologies.

The conference was organized into the following 11 sessions: Advanced Coherent Sensing and Imaging Concepts I & II, Optical Coherence Microscopy, Polarization-Sensitive OCT, Microcirculation Imaging, Advanced Data Processing and Signal Enhancement, Technological Advances, Intravascular and Endoscopic OCT, Biomedical Applications of OCT, Ophthalmic OCT Techniques, and a poster preview session. As usual, OCT focused papers were predominant throughout the sessions.

All submissions were peer-reviewed and scored by the conference committee members, which was instrumental for keeping a high quality of presented papers. Authors were requested to submit a three-page summary. The conference included six excellent invited presentations that were selected as the top six scored submissions:

Stefan Zotter, Double-beam Doppler optical coherence tomography for visualizing the microvasculature within the human retina, Medizinische Universität Wien (presentation only); Thomas Klein, Megahertz retinal OCT: advanced data processing protocols enabled by densely sampled ultrawide-field data, Ludwig-Maximilians-Universität Muenchen (presentation only); Cedric Blatter, High-speed functional OCT with self-reconstructive Bessel illumination at 1300nm, Medizinische
Universtät Wien; Young-Joo Hong, High speed and high penetration Doppler optical coherence tomography, University of Tsukuba (presentation only); Boris Povazay, Simultaneous, tracked multi-wavelength optical coherence tomography for clinical applications, Medizinische Universität Wien (presentation only); Christophe Pache, Combination of dark-field optical coherence microscopy with epi-fluorescence microscopy for functional cell imaging, Ecole Polytechnique Federale de Lausanne (presentation only)

The conference chairs would like to thank the members of the technical program committee for their considerable effort in reviewing and scoring all submissions and for their help in organizing the conference. We appreciate the support from the SPIE and the conference staff. Finally we would like to thank all the conference attendees and manuscript authors for their contributions and participation that helped to make this conference a success.

Rainer A. Leitgeb
Brett Bouma